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 Constructing proofs for the limit using the formal definition induces a high 

cognitive load. Common assessment tools, like cognitive load scales, lack 

specificity for the concept of limits. This research aims to validate an 

instrument tailored to assess cognitive load in students focused on the formal 

definition of limits, addressing the need for diverse strategies in education. The 

research employs a quantitative survey design with a Rasch model approach, 

utilizing a data collection instrument in the form of a questionnaire. 

Subsequently, the data are analyzed by focusing on three aspects: (1) item fit 

to the Rasch model, (2) unidimensionality, and (3) rating scale. A total of 315 

students from three private universities in Banten participated as research 

respondents. The findings of this study affirm the validity of the cognitive load 

scale centered on the formal definition of limit, meeting the stringent standards 

set by Rasch modeling. Additionally, the results of the study provide evidence 

of the scale’s adherence to the monotonic principle of the Rasch model. These 

outcomes contribute to a comprehensive understanding of cognitive load in the 

context of learning formal definition of limit, providing a solid foundation for 

instructional design and assessment strategies. 
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1. INTRODUCTION 

Formal definition of limit idea in the Calculus perspective plays a crucial role in the 

promoting students' higher-order thinking skills (Kidron, 2020; Parr, 2023; Thompson & 

Harel, 2021). The fundamental of abstractness in formal definition of limit takes a role 

initiative transmitter of advanced mathematical thinking to support students' critical 

reasoning and logical argumentation (Ghedamsi & Lecorre, 2021; Jablonka, 2020; 

Oktaviyanthi et al., 2018). Furthermore, the involvement of the epsilon-delta analytical 

context in the formal definition of limit aims to stimulate students' deductive thinking, 
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optimizing their metacognitive potentiality and enabling them to solve problems reflectively 

(Brown, 2022; Case & Speer, 2021; Yan et al., 2020). Learning formal definition of limit 

concept not only fosters students’ thinking skills concerning limits framework but also 

facilitates a rigorous and structured approach to honing their cognitive abilities as the 

foundation for higher-order mathematical thinking (Alam, 2020; Chen et al., 2021; 

Martínez-Planell & Trigueros, 2021; Viirman et al., 2022). Thus, instructing students to the 

abstract concept within formal definition of limit should be examined in learning to 

encourage and optimize mathematical thinking skills. 

One significant challenge in achieving the ideal learning outcomes for the formal 

definition of limit places an emphasis on students constructing proofs processes engaging 

with epsilon and delta (Arzarello & Soldano, 2019; Quarfoot & Rabin, 2022; Slavíčková & 

Vargová, 2023). As an illustration, when students are asked to identify the value of delta for 

any positive epsilon given, they should be able to determine the required delta for any given 

epsilon. The proof typically begins with the statement "assume epsilon is greater than zero." 

However, to comprehend the proof, the procedure does not commence with epsilon, rather 

it initiates with delta (Adiredja, 2021; Oktaviyanthi et al., 2018). Students frequently find 

this type of proposition construction perplexing and exasperating. This situation leads to 

cognitive challenges for students, particularly as their working memory persistently 

processes information until they attain comprehension (Ludyga et al., 2022; Sepp et al., 

2019). In the event that comprehension is unachieved within a specified timeframe, it may 

result in mental fatigue and the experience of maximum pressure. This leads to 

unmanageable over cognitive load. The excessive cognitive load experienced by students 

can have serious implications for the continuity of the learning process and the outcomes of 

teaching performance (Anmarkrud et al., 2019; Chew & Cerbin, 2021). Hence, it becomes 

priority imperative to closely monitor the students cognitive load dynamics throughout their 

learning process. Specifically for the concept of formal limit definition. Understanding it 

heavily relies on comprehending notations such as the inequality symbol, the absolute value, 

variables and Greek letters that act as constants all at the same time. Similarly, this requires 

student’s prior understanding of elementary types of functions, the shape and behaviour of 

their graphs, as well as their defining characteristics. This comprises such as extensive set of 

prerequisite knowledge and skills that will place a heavy cognitive demand on students 

learning the formal definition of limit for the first time. Instructors need to identify the 

specific cognitive demands of the concept to understand how complex the concept is to learn 

and how it contributes to cognitive load. This understanding is crucial for instructors as a 

guide in designing materials and instructional methods so that students can not only manage 

their cognitive potential optimally but also have a focused and easily understandable learning 

experience. 

Cognitive load can be assessed over various methods including brain activity 

measures (functional MRI), physiological measurements (electrical skin conductivity), eye 

tracking, self-rating scales, and even cardiovascular metrics (Can et al., 2019; Katona, 2022; 

Ramakrishnan et al., 2021; Skulmowski, 2023). The most commonly approach employed is 

the utilization of cognitive load scale instruments (Huckaby et al., 2022; Jiang & Kalyuga, 

2020; Klepsch et al., 2017). Cognitive Load Theory considers three distinct categories of 

cognitive load namely cognitive load caused by the complexity of concepts (intrinsic 

cognitive load), cognitive load influenced by the design of learning materials (extraneous 

cognitive load), and cognitive load based on the cognitive activation processes of learners 

during learning (germane cognitive load) (Klepsch & Seufert, 2020; Skulmowski & Xu, 

2022). In its development, cognitive load scales encompass all elements of cognitive load 

types to investigate which aspect of cognitive load is most dominantly perceived by students. 

However, the lack of detailed or widespread measurement tools related to students' cognitive 
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load when facing the concept of limits leaves instructors without diverse strategies to address 

students' cognitive load. Therefore, it is necessary to develop a specified cognitive load scale 

for students' difficulties in understanding the formal definition of limit that meets the 

standards of instrument validity. The development of a cognitive load scale specifically for 

the formal limit concept is crucial not only to determine the extent of cognitive load 

experienced by students but also as an assessment measure of which cognitive aspects 

students feel burdened by and serves as a reference in meeting the learning needs of students 

with different knowledge backgrounds and cognitive capacities.  

The improvement of cognitive load scales has been a relatively stable and enduring 

research subject over the past decade. Leppink et al. (2013) analyzed the primary 

components of cognitive load instruments to trace the effectiveness and efficiency of various 

learning environments based on learning strategies and student characteristics. Hadie and 

Yusoff (2016) validated the cognitive load scale in problem-based learning through construct 

validity and internal consistency tests using confirmatory factor analysis. Gupta and Zheng 

(2020) verified an instrument to assess students' cognitive load in mathematical problem-

solving influenced by three factors: learning strategies, task difficulty, and prior knowledge. 

Ouwehand et al. (2021) confirmed the validity of four subjective cognitive load assessment 

scales: numeric scales (Likert and visual analog), and pictorial scales (facial emoticons and 

embodied) to measure which cognitive processes are more accurately represented. Huckaby 

et al. (2022) formulated a post-training cognitive load scale to measure knowledge 

acquisition and identify barriers in training. Krieglstein et al. (2023) developed and validated 

a cognitive load questionnaire for the three types of cognitive load through two analytical 

methods: principal component analysis and confirmatory factor analysis. From the review 

of previous research, apparently there is still a limited specificity in cognitive load scales 

related to the complexity for the formal definition of limit concept using the Rasch model 

approach. 

Hence, in light of the immediacy and complexities associated with learning the 

formal definition of limits may lead to extreme cognitive load in students, the purpose of 

this research is to evaluate the validity of the student cognitive load instrument in 

comprehending the formal definition of limits to reduce the symptoms of disproportionate 

cognitive load that possibly will obstruct the achievement of teaching and learning 

objectives. 
 

 

2. METHOD 

The research objective is to assess the validity of a specialized student cognitive load 

instrument related to the formal definition of limits to mitigate the effects of excessive 

cognitive load. The research employs a quantitative survey design with a Rasch model 

approach, utilizing a data collection instrument in the form of a questionnaire (Faradillah & 

Febriani, 2021; Pradipta et al., 2021). The instrument being assessed is a Likert scale with 

five rating levels, comprising scale 1 (Strongly Disagree), scale 2 (Disagree), scale 3 

(Neutral), scale 4 (Agree), and scale 5 (Strongly Agree). The instrument aspects investigated 

are divided into three types of Cognitive Load: Intrinsic Cognitive Load (ICL), Extraneous 

Cognitive Load (ECL), and Germane Cognitive Load (GCL) (Klepsch & Seufert, 2020; 

Krieglstein et al., 2023; Sweller, 2011) with statement items tailored to the research purpose, 

specifically in the context of the formal definition of limit as presented in Table 1. 
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Table 1. Cognitive load scale component 

Cognitive 

Load Type 
Cognitive Load Scale in Formal Definition Limit Item 

Intrinsic 

Cognitive 

Load (ICL) 

The formal limit concept is challenging to comprehend ICL1 

The explanation of formal limit is difficult to understand ICL2 

The content of formal limit concept is highly complicated ICL3 

The formal limit concept involves various complex 

information 
ICL4 

Without prerequisite materials and prior knowledge, the 

formal limit concept remains incomprehensible 
ICL5 

Extraneous 

Cognitive 

Load (ECL) 

Learning media aids in providing an overview the 

structure of formal limit concept 
ECL6 

Learning media design in formal limit concept makes it 

challenging to recognize the relationships between 

concepts 

ECL7 

Learning media design in formal limit concept facilitates 

thinking 
ECL8 

Learning media design in formal limit concept makes it 

challenging to quickly locate relevant information 
ECL9 

Learning media design assists in focusing the formal limit 

concept 
ECL10 

Germane 

Cognitive 

Load (GCL) 

I actively visualize the formal limit concept GCL11 

Learning media encourage me to actively think about the 

formal limit concept 
GCL12 

I strive to understand the formal limit concept GCL13 

I struggle to integrate each information section about the 

formal limit concept in the learning media to a more 

comprehensive and general concept 

GCL14 

I find it challenging to fully understand the formal limit 

concept 
GCL15 

I encounter difficulty in extending my prior knowledge 

for the formal limit concept under study 
GCL16 

I am able to promptly and precisely apply the formal limit 

concept through learning media 
GCL17 

 

In Table 1, the components of statements in the cognitive load scale developed in 

this study are illustrated. There are a total of 17 items with 3 main item codes representing 

each type of cognitive load. The code ICL is for statements representing cognitive load 

related to the complexity of the formal limit definition concept, code ECL for items 

indicating cognitive load originating from the instructional design of how the formal limit 

definition concept is delivered, and code GCL for items identifying cognitive load based on 
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the cognitive processes students engage in when understanding the formal limit definition 

concept and constructing comprehensive knowledge. 

The statement items were validated by 12 experts with a minimum of 10 years of 

professional expertise, consisting of 3 experts in mathematics education, 2 mathematics 

experts, 3 experts in cognitive psychology, 2 experts in educational psychology, and 2 

experts in the Indonesian language (Oktaviyanthi & Agus, 2023). The information on the 

instrument validation results using Fleiss Kappa Statistics (Falotico & Quatto, 2015; Gwet, 

2021; Landis & Koch, 1977) is provided in Table 2. 

Table 2. Validation results of cognitive load instrument in the formal limit context 

Cognitive Load 

Type 
Item Fleiss K Index Index Interpretation Decision 

Intrinsic Cognitive 

Load (ICL) 

ICL1 0.47 Moderate agreement Applicable 

ICL2 0.77 Substantial agreement Applicable 

ICL3 0.45 Moderate agreement Applicable 

ICL4 0.83 Almost perfect Applicable 

ICL5 0.58 Moderate agreement Applicable 

Extraneous 

Cognitive Load 

(ECL) 

ECL6 0.68 Substantial agreement Applicable 

ECL7 0.81 Almost perfect Applicable 

ECL8 0.83 Almost Perfect Applicable 

ECL9 0.65 Substantial agreement Applicable 

ECL10 0.62 Substantial agreement Applicable 

Germane Cognitive 

Load (GCL) 

GCL11 0.84 Almost Perfect Applicable 

GCL12 0.55 Moderate agreement Applicable 

GCL13 0.70 Substantial agreement Applicable 

GCL14 0.88 Almost perfect Applicable 

GCL15 0.76 Substantial agreement Applicable 

GCL16 0.49 Moderate agreement Applicable 

GCL17 0.85 Almost perfect Applicable 

 

The cognitive load scale for understanding the formal limit definition was tested on 

315 first-year students at three private universities in Banten, Indonesia who were enrolled 

in Calculus courses. Respondents for the study were not specifically selected to ensure the 

most objective results. Respondent characteristics were heterogeneous, encompassing both 

male and female students with varying levels of mathematical proficiency, including high, 

moderate, and low abilities. Information on the mathematical abilities of the students was 

obtained from a combination of the academic advisor's remarks, mathematics course grades, 

and confirmed through a pre-requisite test on the limit function chapter such as function 

concept and operations, equations and inequalities, quadratic and rational functions. The 

summary of the demographic distribution of the respondents is presented in Table 3. 
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Table 3. Demographic distribution of research respondents in the first semester 

Region Major Study Gender Total Subjcet 

Serang 

Mathematics Education 
M 10 

M: 35 

F: 155 
190 

F 135 

Science and Engineering 
M 25 

F 20 

Cilegon 

Mathematics Education 
M 5 

M: 20 

F: 50 
70 

F 40 

Science and Engineering 
M 15 

F 10 

Pandeglang 

Mathematics Education 
M 5 

M: 15 

F: 40 
55 

F 25 

Science and Engineering 
M 10 

F 15 

Total Subject 315 

 

A quantitative approach using the Rasch analysis model was applied to achieve the 

research objectives. WINSTEPS software version 5.6.2 was used as a data computational 

tool to support Rasch analysis. The instrument's validity test content using the Rasch model 

focuses on three aspects: (1) the adequacy of data with the tested mathematical model, in 

this case, the Rasch model (item fit analysis), (2) the instrument's item capabilities in 

measuring cognitive load (unidimensionality analysis), and (3) respondents' understanding 

of the instrument's rating scale differences (rating scale analysis) (Hadžibajramović et al., 

2020; Toland et al., 2021; Yamashita, 2022). 

Item fit analysis is the evaluation of the quality of statement items' suitability with a 

mathematical model and is detected as an indication of measurement validity in the Rasch 

model. Item fit analysis refers to how far the research data's distance is from its predicted 

values (Chan et al., 2021; Stenner et al., 2023). The technical item fit analysis is theoretically 

performed by examining the compatibility between the research data transformed into a 

specific function and the prediction function of the Rasch model. The evaluation of item fit 

suitability can use purely quantitative and visual approaches. The results of item fit analysis 

in the WINSTEPS software can be found in output table 10, with the following criteria 

(Silvia et al., 2021; Yamashita, 2022): 

- Acceptance of Outfit Mean Square (MNSQ) values ranging from 0.5 < MNSQ < 1.5 

- Acceptance of Outfit Z-standard (ZSTD) values ranging from -2.0 < ZSTD < +2.0 

- Acceptance of Measure Correlation (PTMEASURE CORR) values ranging from 0.4 < 

PTMEASURE < 0.85 

 

As for the graphical (visual) approach in WINSTEPS, it can be found in the 

GRAPSH menu with the Expected Score ICC option. The suitability of item fit in the 

graphical approach is assessed by how well the distribution of responses from the research 

data aligns with the Rasch model graph (Chi et al., 2023). 

Unidimensionality analysis is the evaluation of the measurement quality of statement 

items in the research instrument, intended to measure only one attribute or construct. 
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Unidimensionality analysis is a validity aspect of the instrument that assesses how accurately 

it measures what it is intended to measure (Indihadi et al., 2022; Josa & Aguado, 2020). The 

results of unidimensionality analysis in WINSTEPS can be found in output table 23, 

categorized based on Fisher's criteria in Table 4 (Ramesh & Sanampudi, 2022). 

Table 4. Fisher’s unidimensionality criteria 

Cognitive Load Type Poor Fair Good 
Very 

Good 
Excellent 

Variance in data explained by 

measure 

< 50% 50 – 60% 60 – 70% 70 – 80% > 80% 

Unexplained variance in contrasts 

1-5 of PCA of residuals 

> 15% 10 – 15% 5 – 10% 3 – 5% < 3% 

 

The interpretation of unidimensionality relies on two criteria in Table 4. A higher 

variance value and a lower unexplained variance value indicate that the instrument is better 

at measuring the intended construct (Al Ali & Shehab, 2020). This means that the developed 

instrument does not have the potential to measure aspects beyond what it is intended to 

measure. 

Rating scale analysis is the verification of ratings in the instrument to demonstrate 

the accuracy of the choices provided by respondents (Naar et al., 2021; Qu et al., 2023). 

Rating scale analysis serves to detect indications of respondents' misunderstanding of the 

rating of statement items. The results of rating scale analysis in WINSTEPS are shown in 

output table 3.2 in the columns of observed average (OBSVD AVRGE) and Andrich 

Threshold. The rating indicator of the instrument is considered to function properly if the 

values in the OBSVD AVRGE column follow the monotonic principle, increasing from 

rating 1 to rating 5, and the gap between ratings in the Andrich Threshold column ranges 

from 1.4 to 5.0 (Eckes & Jin, 2021; Swain et al., 2023). 
 

 

3. RESULT AND DISCUSSION 

3.1. Results 

3.1.1. Item Fit Analysis 

The item fit analysis results for the cognitive load scale focusing on formal limit 

definition in the WINSTEPS software are presented in output table 10, as depicted in Figure 

1. 

In Figure 1, it can be observed that the first criterion for instrument item validity is 

located in the Outfit Mean Square (MNSQ) column with an accepted range of values ranging 

from 0.5 < MNSQ < 1.5. The MNSQ values for the 17 statements in the cognitive load scale 

range from 0.65 to 1.47, indicating compliance with the MNSQ criterion. Furthermore, the 

second criterion for item validity is located in the Outfit Z-standard (ZSTD) column with an 

acceptance range of -2.0 < ZSTD < +2.0. The ZSTD values for each statement in the 

cognitive load scale fall within the interval of -1.98 to 1.83, indicating the achievement of 

the ZSTD criterion. As for the third criterion in item validity, it is examined in the Measure 

Correlation (PTMEACORR) column with an acceptance range of values from 0.4 < 

PTMEACORR < 0.85. The PTMEACORR values of the statements in the cognitive load 

scale fall within the parameter acceptance range, with the smallest value being 0.41 and the 

largest being 0.64. 
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Figure 1. Output table 10 in WINSTEPS 

 

In light of the completion of the MNSQ, ZSTD, and PTMEACORR parameters, it 

can be said that the statements in the cognitive load scale are in accordance with the 

predictive function of the Rasch model, and there is no conflict between the items and the 

measured construct (Chi et al., 2021; Koskey et al., 2017). Furthermore, PTMEACORR 

values > 0.40 indicate that the developed cognitive load scale has excellent item 

discrimination. 

 

3.1.2. Unidimensionality Analysis 

The results of unidimensionality analysis for the cognitive load scale of the formal 

limit definition in the WINSTEPS software are presented in output table 23, as shown in 

Figure 2. 
 

 

Figure 2. Output table 23 in WINSTEPS 

 

In Figure 2, it can be observed that the percentage of observed raw variance explained 

is 76.7%, which falls into the category of excellent according to the assumption of 

unidimensionality criteria. This value indicates that the developed instrument originates 

from a one-dimensional measurement or has excellent accuracy in measuring only one 

factor, which is the cognitive load of the formal limit definition. Additionally, the value of 

unexplained variance in the 1st contrast is 5.7%, which falls into the good category, 
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reinforcing that the items in the instrument can differentiate the measured factor and are not 

influenced by other factors that should not be measured. 

 

3.1.3. Rating Scale Analysis 

The results of the rating scale analysis for the cognitive load scale of the formal limit 

definition in the WINSTEPS software are presented in output table 3.2, as shown in Figure 

3. 
 

 

Figure 3. Output table 3.2 in WINSTEPS 

 

In Figure 3, with the description "OBSVD AVRGE," it indicates the fulfillment of 

the monotonic principle, which means a consistent increase in values between ratings from 

1 to 2 and so on. This increase serves as an indicator that the ratings in the cognitive load 

scale of the formal limit definition function effectively in eliciting responses from the 

research subjects. Another indication of whether the respondents understand each rating in 

the cognitive load scale is shown through a graphical approach, as depicted in Figure 4. 
 

 

Figure 4. Rating test scale (partial-credit) graph 

 

From the illustration in Figure 4, it can be observed that each rating has distinct peaks 

separated from one another. This fact indicates that the ratings in the cognitive load scale are 

understood by the respondents. Ratings 1, 3, and 5 have higher peaks than ratings 2 and 4. 

This information needs to be further examined through the calculation of the Andrich 

Threshold index. 

The Andrich Threshold index is used to investigate how well and how accurately 

research subjects understand the options provided in the cognitive load scale. The ideal 

Andrich Threshold values range from NONE, negative, to positive, and the ideal distance 
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between ratings falls within the logit values of 1.4 – 5.0. The detailed distances between 

ratings are shown in Table 5. 

Table 5. Distance between Rating 

Rating Label 
Andrich 

Threshold 

Distance Between 

Rating 

Distance Between 

Rating Type 

1 SD None   

   2.34 Ideal 

2 D -2.34   

   1.07 Non Ideal 

3 N -1.27   

   2.82 Ideal 

4 A 1.55   

   0.52 Non Ideal 

5 SA 2.07   

  

From Table 5, it can be observed that the non-ideal rating distances are present 

between rating 1 to rating 2 and rating 4 to rating 5. This non-ideality refers to a rating 

distance of < 1.4 logit. This fact indicates that respondents experienced confusion or did not 

accurately understand when selecting between rating 1 or 2 and 4 or 5. As pointed out in the 

works of Andrich (2013) and Andrich and Pedler (2019) the distance between non-ideal 

ratings illustrates respondents' misunderstanding in distinguishing rating choices according 

to the factual conditions they experience. Respondents assume that selecting an item with 

the 'Strongly Disagree' scale can be represented by ratings 1 or 2, but in reality, the difference 

between rating 1 and rating 2 has a different scale meaning, indicating a priority scale within 

their choices. 

 

3.2. Discussion 

The research findings emphasize the validity of the cognitive load scale based on the 

Rasch model to detect an increase in students' cognitive load when studying the formal limit 

concept. The first testing criterion is the analysis of item fit to determine the extent to which 

the instrument items provide appropriate information. In Rasch modeling, the validity of an 

item's statements is measured by parameters such as MNSQ, ZSTD, and PTMEACORR. 

Based on the analysis results presented in Figure 1, it can be concluded that the cognitive 

load scale items meet the validity criteria for parameters. Meeting these criteria means that 

the research subjects' response patterns to the instrument's statement items align with the 

prediction function of the Rasch model (Bond & Fox, 2007; De Ayala, 2018). 

An interesting aspect of instrument validity testing using the Rasch model is the 

ability to trace the difficulty level of statements, from those considered the most difficult to 

those that are easiest for respondents to agree with. In Figure 1, under the ITEM column, the 

top position indicates the statement item that is most challenging to measure cognitive load 

responses, which is item coded as GCL14, and the bottom position provides information 

about the statement item that is the easiest to measure cognitive load responses, coded as 

ICL3. In the "Item Statistics" column, the metric commonly employed to measure the 

difficulty level of an item is the "Difficulty" or "Location" parameter (θ) (Chung & Cai, 

2021; Shi et al., 2023). If an item has a positive θ value, it indicates a challenging item, as a 

higher level of ability is required to answer it correctly. Conversely, if an item has a negative 

θ value, it signifies an easy item, as it can be answered proficiently by respondents with 
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lower levels of ability (Mutiawani et al., 2022; Nima et al., 2020). Therefore, the topmost 

position in the "Item Statistics" column signifies the most challenging item to measure, as 

respondents with lower ability levels have a lower likelihood of answering it correctly. This 

insight provides an understanding of how well the instrument can differentiate among 

individuals with varying levels of ability, and this information can be valuable in optimizing 

instrument design or enhancing measurement quality (Aghekyan, 2020; Brzezińska, 2020). 

Item with code GCL14, designated as the most challenging item to gain respondent 

agreement, falls under the code of germane cognitive load, which are the cognitive load 

resulting from cognitive processes relevant to the understanding of the material being studied 

and the knowledge construction process. If an individual does not have germane cognitive 

load, it means their working memory cannot organize, construct, elaborate, or integrate the 

concepts they are currently learning into long-term memory (Forsberg et al., 2021; 

Skulmowski, 2023). Conversely, individuals with issues related to germane cognitive load 

tend to attempt to connect new knowledge with their existing knowledge, hoping to store it 

in their memory (Klepsch & Seufert, 2020). The more an individual faces complexity in 

processing new knowledge, the greater the germane cognitive load they experience (Bishara, 

2022; Szulewski et al., 2021). Upon further examination in the ITEM column of Figure 1, it 

is evident that of the five statement items that respondents found most challenging to agree 

with, three of them are coded as GCL. This raises the assumption that the research subjects 

do not tend to have germane cognitive load. This indicates a lack of cognitive activation in 

students during the learning process. This information provides a recommendation for 

researchers to further investigate the factors causing this phenomenon. 

Furthermore, item with code ICL3, regarded as the item that respondents found 

easiest to agree with, falls under the category of intrinsic cognitive load, which is the 

cognitive load resulting from the complexity of the material. The concept of a formal limit 

definition is considered complex due to its involvement of deep mathematical understanding, 

particularly concerning epsilon-delta numbers (Adiredja, 2021; Oktaviyanthi et al., 2018). 

Epsilon is seen as a number used to express the precision level or the acceptable margin of 

error in measuring the distance between the actual value of a function and the expected value 

(Brown, 2022). The smaller the epsilon value, the tighter the allowable error limit. On the 

other hand, delta indicates how close the independent variable must get to a specific value 

for the limit result to meet the epsilon-specified error limit. Recognizing that research 

subjects easily agreed that the formal limit definition concept is highly complex signifies the 

potential occurrence of intrinsic cognitive load (Case & Speer, 2021). This information can 

be a consideration for instructors to present content material in a way that is most 

understandable for students. 

Although there are statement items in the instrument that are the most challenging 

and easiest in measuring cognitive load responses, overall, there are no items that deviate or 

fail to meet the criteria. This is further supported by the graphical approach of the Expected 

Score ICC, as shown in Figure 5. 
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Figure 5. Expected score ICC graph 

 

In Figure 5. the distribution of responses is represented by black crosses and 

connected by blue lines, spread in the confidence space of the Rasch prediction model, 

symbolized by the red line, and around the tolerance region of the curve, symbolized by the 

black line (Hoijtink, 2005; Wu et al., 2016). This visualization signifies that the 17 

statements in the cognitive load scale of the formal limit definition can accurately measure 

what is intended to be measured. In more detail, Tesio et al. (2023) elaborate that the criteria 

for assessing a scale are as accurate as possible in depicting the latent variable being 

measured. This is observed from the expected score ICC graph, where the distribution of 

responses for each item aligns along the curve of the model, along with its tolerance 

boundaries. The ICC graph itself provides a representation of the expected scores by the 

Rasch model for each item on the y-axis at every level of the measurement continuum (x-

axis) (Boone & Staver, 2020; Hagell, 2019). 

Another research finding is related to the results of the Andrich Threshold index in 

Table 5, indicating an indication of respondents' inability to distinguish the options provided 

in the cognitive load scale. Non-ideal spacing between ratings occurs in options 2 (Disagree) 

and 4 (Agree). The ideal rating criteria are met when the rating scale analysis > 1.4 logit. If 

the logit value of the rating < 1.4, it is recommended to merge the rating scale. If the ratings 

are not merged, it signifies that the 5-Likert scale on the cognitive load instrument lacks 

adequate discrimination and has overlapping thresholds in various items, so the response 

format is considered for modification (Boone & Staver, 2020; Casale et al., 2023). Figure 6, 

part (a), shows the graph before merging the ratings, and part (b) displays the graph after 

merging the ratings. After merging rating 2 with rating 1 and rating 4 with rating 5, the logit 

values of the ratings become ideal according to the rating scale analysis criteria. 
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Figure 6. Probability Response to Items Graph 

 

Based on the main findings outlined, the following recommendations are considered 

strategic steps to provide reinforcement and positive contributions to the development of the 

cognitive load scale within the context of the formal definition of limits. The unique 

characteristics of the mathematical context and learning environment introduce contextual 

variations in measurement outcomes, rendering research results non-generalizable (Fennell 

& Rowan, 2001; Wang et al., 2020). Referring to this, conducting external validation 

according to Ho et al. (2020) and Quintão et al. (2020) offers the possibility of generalizing 

results, validating contextual applicability, and identifying variability. Furthermore, 

expanding contextual variables is also a consideration in constructing the cognitive load 

scale. Rationalizing research findings can provide a more realistic depiction of material 

complexity, yield a more holistic analysis, and provide a comprehensive insight into factors 

contributing to cognitive load, determining which factors have the most significant impact 

(Breves & Stein, 2023; Mangaroska et al., 2022). Other recommendations focus on the 

coverage and diversity of respondents, which should at least be a researcher's consideration 

to ensure research results are more relevant, reduce potential bias, help improve accuracy in 

understanding population variability, and broaden the scope of respondents who need further 

empowerment (Johnson et al., 2020; Lakens, 2022). 

 

4. CONCLUSION 

In this study, we employed a Rasch model approach to examine the validity of the 

cognitive load instrument focused on the formal definition of limits. The results of the 

research indicate that the instrument is valid and capable of measuring differences in 

students' cognitive load. These findings provide essential insights into how the 

understanding of the limit concept is related to cognitive load. The results of this study have 

significant implications for the development of more effective mathematics teaching 

strategies. However, it should be noted that this research has limitations in terms of subject 

coverage and context. Some limitations of this study that need to be considered include: 1) 

the context of the cognitive load instrument is focused on students' difficulties, namely the 

formal definition of the limit, additional studies could explore on other specific topics in 

mathematics or related topics in Calculus that are notoriously known for demanding a high 

level of cognitive load from student; 2) the cognitive load experienced by students in the 

context of the formal definition of the limit is measured through the cognitive load scale, but 

a more in-depth examination of the general representation of the complexity level of this 

material is needed by involving a larger number of respondents; 3) the variability of 

respondents is not fully considered in the research, so differences in mathematical abilities 
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and previous experiences are not the focus of discussion; and 4) the selection of research 

respondent samples is based on first-year students who are currently studying the limit 

function chapter, so the results are not specific to students in a particular study program. 

Therefore, further research is needed to confirm these findings in various educational 

contexts. Some recommendations that can be proposed based on the limitations of the study 

include conducting external validation in different mathematical contexts, expanding the 

context of variables to detect the complexity of material that may have a greater impact on 

cognitive load, considering individual factors that may affect cognitive load, and broadening 

the coverage and diversity of respondents. Aside from this, the Cognitive Load Scale can be 

useful for researchers in comparing and ordering topics in mathematics according to their 

cognitive load requirement. Results from these kinds of studies have implications on the way 

mathematics curricula are designed in such a way that topics with high cognitive load 

requirement are distributed and spaced out to facilitate better learning among students. 
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