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Abstract 

Understanding and constructing mathematical proofs is fundamental for students in abstract algebra 

courses. The computational thinking approach can aid the process of compiling mathematical proofs. 

This study examined the impact of integrating computational thinking components in constructing 

mathematical proofs. The researcher employed a sequential explanatory approach to ascertain the 

enhancement of algebraic proof capability based on computational thinking through the t- test. A 

total of 32 prospective teachers in mathematics education programs were provided with worksheets 

for seven meetings, which were combined with computational thinking components. Quantitative 

data were collected from initial and subsequent test instruments. Moreover, three prospective 

teachers were examined through case studies to investigate their mathematical proof capability using 

computational thinking components, including decomposition, abstraction, pattern recognition, and 

algorithmic thinking. The study's findings indicated that CT intervention enhanced students' logical 

reasoning, proof-writing abilities, and overall engagement with abstract algebra concepts. The 

findings illustrate that integrating computational thinking into learning strategies can provide a 

framework for developing higher-order thinking skills, especially in proving, which are essential for 

studies in mathematics education programs. 
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1. INTRODUCTION 

Mathematics is a logical and deductive science because the process of seeking truth 

(generalization) in mathematics differs from the process of seeking truth in natural and other 

sciences. Arnawa et al. (2020) suggested that the study of mathematics at the university level 

must follow these stages: understanding definitions, understanding theorems or lemmas and 

their proofs, and doing practice questions to strengthen understanding of definitions, 

lemmas, and theorems in solving problems. Many mathematical concepts must be proven 

because proof is essential for developing, building, and communicating mathematics 

(Stylianides, 2007). Logical arguments built through mathematical proofs can demonstrate 

the correctness of mathematical statements (McCarthy, 2021). A proof is a logical argument 

that is known to be true. According to Pythagoras, a mathematical proof verifies the truth of 

a statement, provides reasons for the truth of the statement, systematizes findings using 

concepts, axioms and theorems, leads to new findings, disseminates mathematical concepts, 

and poses intellectual challenges (Hanna & Barbeau, 2002). 

According to Hanna and Barbeau (2010), a mathematical proof can be approached 

from two different perspectives. First, solution finding involves a set of deductive strategies 

that prioritize the syntax of the proof. The other perspective prioritizes ideas that lead to a 

more meaningful understanding. Each perspective from which the mathematical proof is 

approached  on three components: hypotheses, conclusions, and constructed ideas (Arbaugh 

et al., 2018). 

There are several types of proofs in mathematics: direct proof, indirect proof 

(contrapositive and contradiction proof) and induction proof. Each method of proof in 

mathematics is different; each proof technique has different epistemic, cognitive, and 

practical strengths and weaknesses (D'Alessandro, 2019). It is essential to use clear and 

concise methods of proof that are widely accepted and understood by the mathematical 

community. (1) Direct proof establishes the conclusion by logically combining the axioms, 

definitions, and earlier theorems, for example, to prove that the sum of two even integers is 

always even. (2) An indirect proof begins with the presumed negation of the proportion to 

be demonstrated and demonstrates that it results in an opposing condition. There are two 

principal forms of indirect proof: proof by contradiction involves assuming the opposite of 

the statement to be proven and then showing that this assumption leads to a contradiction. 

For example, to prove that the square root of 2 is irrational, one can assume that it is rational 

and then derive a contradiction; proof by contrapositive involves proving the contrapositive 

of the statement to be proven. For example, to prove that P implies Q, one can prove that not 

Q implies not P. (3) Proof by mathematical induction is used to prove true statements for all 

natural numbers. It involves proving the base case and then showing that if the statement is 

true for a given number, it must also be true for the following number.  

The capacity to demonstrate proficiency in proof is regarded as a crucial element of 

mathematical comprehension and the reinforcement of mathematical principles (Stylianides, 

2007). Moreover, proof ability can be employed to facilitate a more profound comprehension 

of the subject matter (Hanna & de Villiers, 2008). Killpatric posits that this concept 

understanding ability represents one of the fundamental competencies in mathematics. 

Furthermore, proof provides a basis for students to learn new knowledge more deeply 
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because it enables students to make sense of things systematically, not just through the 

authority of the teacher or textbook (Ball & Bass, 2003). As such, proof occupies a place of 

much importance in mathematics (Gabriel et al., 2020). From a curricular perspective, the 

importance of mathematical proof skills requires that early education mathematics curricula 

provide authentic experiences related to proof (Bruner, 1974; Stylianides, 2016). In other 

words, special attention should be directed to how mathematical proof skills may be 

achieved by students.  

One of the courses that requires students to make a lot of proofs is the abstract algebra 

course. Abstract algebra, also known as modern algebra (Albert, 2018) or structural algebra 

(Kieran, 2018), is the manipulation of abstract symbols (Wagner & Parker, 1993) in the 

context of solving equations. Abstract algebra is a compulsory course for mathematics 

students in undergraduate mathematics programs. This course revolves around the study and 

complex analysis of different algebraic structures, namely groups (Halbeisen et al., 2007), 

rings (Rowen, 2018), and fields (Gouvêa, 2012). 

However, many students struggle with this course, first, because of some problems 

and misconceptions related to the basic concepts of abstract algebra (Feudel & Unger, 2024) 

and, secondly, because of weak mathematical proof skills (Bergwall, 2019). At least they 

tend to struggle with two significant aspects of proof: the first one, they wrestled with making 

assumptions when part of an if-then statement is not satisfied and understanding that a 

statement and its converse are not equivalent  (Putra et al., 2023), and on the other hand, they 

grapple with understanding the role of examples, counterexamples, and specific cases 

(Bergwall, 2019).  

A method or way of teaching that can be used to improve mathematical proof skills 

is needed (Jeannotte & Kieran, 2017; Selden & Selden, 2008). This means that teaching 

mathematical proof can be incorporated into direct instruction, for example, in abstract 

algebra courses (Valenta & Enge, 2022). In addition, lecturers have an important role in 

helping students to prove by introducing new rules that encourage students to do so. Thus, 

what must be done in the learning process to help students develop the ability to prove? From 

the mathematics learning process perspective, mathematics teaching as a communication 

activity is expected to bring the mathematical discourse of students into that of 

mathematicians’ (Tabach & Nachlieli, 2016; Valenta & Enge, 2022). Computational 

Thinking (CT) may be employed as a methodology to attain the standards of scientific 

thinking (Orban & Teeling-Smith, 2020).  

CT directs students to help solve problems, in this case, with proof in mathematics 

using certain stages. Palts and Pedaste (2020) described it as a problem-solving approach. It 

is as prevalent and valuable for computational scientists as fundamental for anyone. The 

educational benefits of computational thinking are due to the use of abstractions and 

reasoning skills, which enhance and reinforce intellectual abilities and, therefore, are 

transferable to different domains (Rodríguez-Martínez et al., 2020). CT can be integrated 

into the teaching and learning process to help students explore new concepts in several stages 

(Kallia et al., 2021; Palts & Pedaste, 2020; Waterman et al., 2020). 

Wing (2006) sees CT as pivotal to any activity involving human analysis, not just 

computer programming. Computerless CT skills can drive CT capabilities in non-computing 
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environments (Tang et al., 2020). This approach allows students to experience and learn 

computational thinking without a computer but with other learning media or materials (Kuo 

& Hsu, 2020). 

The integration of CT into the curriculum in several schools in different countries 

has had a positive impact on students' problem-solving, data analysis, and modeling skills 

(Aydeniz, 2018; Kong, 2016). CT involves a systematic thinking process, from the 

formulation of the problem to the solution, where the solution is presented in a form that can 

be effectively executed by an information processing agent (Wing, 2006).  In this study, four 

CT components were used, namely decomposition, pattern recognition, abstraction, and 

algorithmic thinking (Emara et al., 2021). Decomposition refers to simplifying a complex 

problem by breaking it down into smaller problems to make the overall problem easier to 

manage and solve (Csizmadia et al., 2015; Dong et al., 2019; Grover & Pea, 2023). Pattern 

recognition refers to identifying patterns, regularities, and trends in data, processes, or 

problems (Dong et al., 2019). Abstraction is the process of making artifacts easier to 

understand by reducing unnecessary details and the number of variables, leading to simpler 

solutions (Cansu & Cansu, 2019). Finally, algorithmic thinking pertains to the development 

of step-by-step instructions for solving the same problem (Csizmadia et al., 2015). 

Research that identifies and explores mathematical proof skills has been linked to 

several other mathematical contexts. To ensure the novelty of this research, the VOSviewer 

tool was used, with data extracted from Scopus. The keywords used were 'proof' and 

'mathematics.' The inclusion criteria were that the research must be published anywhere 

between 1935 and 2024 within the mathematics or social sciences subject areas and written 

in English. A total of 6,740 articles were found to satisfy these criteria. The VOSviewer 

visualization of the results is provided in Figure 1. 
 

 
 

Figure 1. Linkages between the keywords "proof" and “computational thinking” 

visualized by VOSviewer 

 

Two main keywords, “theorem proving” and “proof,” appear in the two figures (see 

Figure 1). The former is related in terms of research context with “problem-solving,” “graph 

theory,” “matrix algebra,” etc., while the latter with “problem-solving,” “reasoning,” 
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“teacher education,” etc. No research work links “students' mathematical proof skills” with 

“computational thinking” or “abstract algebra.”  

Based on the results of the above exploration, this study aimed to explore students’ 

achievement of mathematical proof skills in the Abstract Algebra course with an intervention 

through several components of computational thinking in the learning process. There are 

three research questions posed in this study: (1) How did the design of worksheets examining 

students’ proof processes in the Abstract Algebra course based on CT components? (2) Is 

there an increase in students' mathematical proof skills after learning the Abstract Algebra 

based on CT component course? and (3) How did the process of proof applying 

computational thinking stages in the Abstract Algebra course go? 
 

2. METHOD 

2.1. Research Design 

This study used a sequential explanatory research design, where quantitative data 

analysis was supported by qualitative data (Creswell & Creswell, 2017). The quantitative 

research method was applied to a quasi-experimental with one sample: 
 

O  X1   O  X2  (Davison & Smith, 2018) 
 

Where O is the treatment, 

X1 is the first test, and 

X2 is the second test 

 

This research began with implementing learning based on the stages of 

computational thinking. After seven meetings of teaching and learning activities, a test was 

conducted to see students' achievement of mathematical proof skills. Another seven learning 

meetings were conducted afterward, followed by another test to review the students’ 

achievement of mathematical proof skills a second time. Quantitative data were collected 

from students’ results of the first and second tests. 

Moreover, a qualitative methodology was employed utilizing a case study approach. 

Of the 32 prospective teachers who completed the test, three representative responses were 

selected, which could be indicative of other responses with a similar process. Semi-

structured interviews were conducted to align with the student's written responses. In order 

to gain more in-depth information, and identify the thought processes of the students on 

whom CT stages were implemented to help with their mathematical proof.  
 

2.2. Population and Sample 

The participants in this study were 32 students of the Mathematics Education study 

program at Universitas Pendidikan Indonesia. They studied the ring theory topic, part of the 

Abstract Algebra course, in the odd semester of 2023. They were in their fifth semester of 

studying at the university. Before taking this course, they took the number theory, linear 

algebra, and group theory courses. Three of the students who had completed the assignment 

were selected to participate in interviews, they chose because of specific answer (Etikan et 

al., 2015). This selection was grounded on the selected students’ representativeness of 



 Nurlaelah et al., Improving mathematical proof based on computational thinking components …  90 

responses with similar response characteristics. In other words, it was expected that they 

represented students with similar stages of thinking as theirs. 
 

2.3. Instruments 

The quantitative instruments used in this study were tests, while the qualitative 

instruments were interview guides. Prior to undertaking the test, the students engaged in 

learning activities using the worksheet were prepared in compliance with the components of 

computational thinking. In the context of mathematical proof (Ambarwati et al., 2017; Intan 

et al., 2022), computational thinking was expected to assist students in navigating the 

components.  

The mathematical proof indicators utilised in the student assessment are delineated 

in Table 1 (A'idah, 2022), accompanied by the CT components that are tasked with assisting 

in the resolution of the mathematical proof problem. 

Table 1. The mathematical proof indicator intersects with component of CT 

Indicators Mathematical Proof CT Components 

Understanding the problem and simplifying it Decomposition 

Determine ideas based on patterns from given statements Pattern recognition 

Provide reasons for each step of a given mathematical proof Abstraction 

Assessing true/false statements in each step of the proof Algorithmic thinking 

 

Moreover, qualitative data were gathered through semi-structured interviews. The 

interview instrument was employed to ascertain the students' methodology for solving 

mathematical proof problems. Consequently, the questions were structured according to the 

following proof indicators: (a) does recording the known information facilitate the resolution 

of the problem?; (b) following the recording of the known information, what is the 

subsequent step?; (c) how do you identify the solution pattern?; (d) How do you manipulate 

numbers to find the solution? 
 

2.4. Procedure 

The study began with the delivery of lectures. At the start of each lecture, students 

were assigned to complete a worksheet designed to test their understanding of certain 

concepts they were assigned to learn independently in the previous week. For example, if 

the lecture to be delivered in a meeting this week concerned the definition and examples of 

a ring, students were assigned to learn them independently one week before this week.  

After the first seven learning sessions in which students completed tasks following 

the CT components, the first test was administered to measure their abilities. After another 

seven sessions, the second test was given. The first test question contains materials on the 

definitions of ring, subring, integral region, and field. The second test question contains 

materials on ring homomorphisms, ring polynomials, ideals, and the fundamental theorem 
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of homomorphism. The assessment of students’ responses was based on the rubric presented 

in Table 2. 

Table 2. CT-based mathematical proof ability assessment rubric 

CT Component Indicator Mathematical Proof Score 

Decomposition The student wrote known and questioned components 

completely in their language 

2 

The student did not write down all known and questioned 

components 

1 

The student left the answer sheet blank 
0 

Pattern 

recognition 

The student could find the right pattern to simplify and solve 

problems 

3 

The student found inappropriate patterns to simplify and solve 

problems 

2 

The student did not complete the argument that had been 

formed 

1 

The student left the answer sheet blank 0 

Abstraction The student could identify general principles that produced 

patterns or regularities 

3 

The student could identify some general principles that 

produced patterns or regularities 

2 

The student identified general principles but did not arrive at 

the correct answer 

1 

The student left the answer sheet blank 0 

Algorithmic 

thinking 

The student developed and carried out procedures following 

the directed concepts and performed calculations well and 

correctly 

2 

The student developed and carried out procedures incorrectly 

or performed calculations incorrectly 

1 

The student left the answer sheet blank 0 

 

In addition, representative student responses were selected for further analysis. Three 

students with representative responses were interviewed. The results of the interview became 

the source of data to identify the students' thinking patterns. The flow chart in this study is 

shown in Figure 2. 
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Figure 2. Flowchart of research procedure 

 

2.5. Data Analysis 

Data were collected from the first and second tests and interviews and analyzed for 

relevance and adequacy. The data from the first and second tests were analyzed by 

conducting a dependent t-test or Wilcoxon signed-rank test to see the impact of CT on 

achieving mathematical proof skills, and achievement of students of the Mathematics 

Education program and observe their improvement after the second test in comparison to 

their outcomes in the first test.  

From the 32 student responses, representative answers were selected. Selected 

representative responses were analyzed to examine the proof processes of the students. 

Answer sheets and interview transcripts were analyzed based on completeness in the context 

of mathematical proof skills through each CT components. Interviews were carried out to 

clarify the students’ thought processes that they demonstrated in writing. Interview 

transcripts were written to allow for repeated reading and easy understanding and to match 

the interview results with the written answers. In addition, the researcher clarified the 

Start 

Learning using worksheets 

based on CT 

Student mathematical proof 

ability test 

normality test 

t-test 

Yes No 

Wilcoxon test 

Interview 

Interview Transcript 

Thinking pattern analysis 

Finish 
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students' answers to the questions in the worksheets they worked on previously, which 

served as the main source of data on the student’s learning process in the classroom. This 

was done to create good credibility in qualitative research (Fraenkel et al., 1993). Data from 

tests, interviews, and documentation were analyzed in the context of mathematical proof 

skills. 

 

3. RESULTS AND DISCUSSION 

Research data from the first and second tests will be presented in the form of 

descriptive statistical data. These data were analyzed using a dependent t-test or Wilcoxon 

signed-rank test. Students' mathematical proof skills demonstrated through worksheet 

answers were examined following CT components. 
 

3.1. Results 

The design of worksheets examining students’ proof processes in the Abstract Algebra 

course based on CT components 

The Abstract Algebra course taken by Mathematics Education students comprises 

four topics, each supported by a module corresponding to the stages of CT. These modules 

facilitate students' ability to prove. CT provides a structured approach to building predictive 

models, conducting investigations, and analyzing data. In this context, CT-steps-based 

worksheets guided students in solving problems with a more systematic thinking process. In 

other words, these worksheets guided students to identify the most appropriate way to 

describe patterns and processes. A problem regarding the concept of homomorphism, one of 

the topics raised in the Abstract Algebra course, is depicted in Figure 3. 
 

 

Translation 

PROBLEM 

Let C be a set of complex numbers and (C, +, 

x) be a ring. γ: C → C is defined by γ (a + bi) 

= a - bi. Prove that γ is an isomorphism! 

a. What is known and what needs to be 

solved? 

b. What concepts are needed to prove the 

problem? 

c. What steps are needed to solve the 

problem? 

d. Carry out the steps presented in section c! 

Figure 3. Intervention with an abstract algebra worksheet based on CT components 

 

Each proof problem contained a guiding principle that encouraged students to 

develop more focused solutions. Each affirmation was tailored to the CT components. More 

details can be found in Table 3. 
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Table 3. Adjustment of CT components to the stages used in the worksheet 

CT components Context at each CT component Guide to the problem 

Decomposition Troubleshooting and finding the 

core problem 

What is known and what 

needs to be solved?  

Pattern recognition Looking for patterns in a problem 

to solve 

What concepts are needed to 

prove the problem? 

Abstraction Identifying general principles that 

create patterns 

What steps are needed to 

solve the problem? 

Algorithmic thinking Using the steps/information to 

solve the problem 

Carry out the steps presented 

in section c! 

 

The CT components applied through questions assist students in decomposing 

intricate problems into more straightforward components, thereby facilitating deeper 

comprehension, description, or analysis of them. For illustration, an exemplary worksheet is 

depicted in Figure 3. The question "What is known and what needs to be solved?" was 

designed to assist students in conducting preliminary investigations by identifying pivotal 

elements within the problem. In turn, these essential elements were organized into a 

systematic structure. The question "What concepts are needed to prove the problem?" was 

designed to assist students in anticipating the concepts pertinent to the problem. Students 

were encouraged to investigate the concepts and their relevance to the problem to be proven. 

This intervention also aimed to help students identify emerging patterns and trends and find 

alternative solutions. The next question "What steps are needed to solve the problem?" 

directed students’ focus to the constituent elements of the solution. This was exemplified by 

the specific steps that led to the desired outcome. The final instruction "Carry out the steps 

presented in part c to solve the problem!" required that students navigate the solution within 

the established framework. At this juncture, students must be able to cope with the 

manipulation of the mathematical context. 
 

Quantitative Result. Students' mathematical proof skills achievement in the Abstract 

Algebra course after studying with CT worksheets 

A total of 32 students participated in the first and second tests. The evaluation criteria 

were based on a rubric. The students demonstrated a commendable performance in both the 

first and second tests (see Table 4). This indicates that the students possessed the requisite 

abilities to engage with the learning process of abstract algebra in accordance with the CT 

components. Furthermore, the overall score of the students exhibited an upward trend from 

the first test to the second one. The results demonstrated a notable improvement in the 

students’ outcomes, as illustrated in Table 4. 
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Table 4. Comparison of the first and second test results 

  Statistic 
Std. 

Error 

First test Mean 68.66 39.61 

Std. deviation 22.45   

Minimum 20.00   

Maximum 97.50   

Range 77.50   

Interquartile range 25.00   

Skewness -.933 .414 

Kurtosis -.048 .809 

Second test Mean 80.09 17.28 

Std. deviation 37.79   

Minimum 48.75   

Maximum 98.75   

Range 40.00   

Interquartile range 15.41   

Skewness -.384 .414 

Kurtosis -.447 .809 

 

The descriptive statistics in Table 4 illustrate that the mean score on the second test 

was higher than the mean score on the first test, with an average difference of 11.42. The 

distribution of first and second test score data exhibited a broad range of values, with the 

mode exceeding the mean. Additionally, there was an increase in the minimum score, with 

a difference of 28.75. This suggests that students had enhanced mathematical proof skills. 

The significance of the difference between the first and second test results was identified 

using a paired samples t-test, and the results are presented in Table 5. 

Tabel 5. T-paired test result 

 

Paired Differences 

t df 
Sig. 

(2-tailed) Mean 

Difference 

Std. 

Deviation 

Std. 

Error 

Mean 

95% 

Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 1 The 

second 

test  - 

The first 

test 

11.41 14.34 2.53 6.24 16.59 4.50 31 0.000 

 

Based on the paired sample test output (see Table 5), the Sig (2-tailed) value is 0.000 

<0.05, so Ho is rejected and Ha is accepted. It can be concluded that there is an average 

difference between the learning outcomes in the first test and the second test. This means 
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that the mathematical proof process in the algebra courses supported by CT components 

affects the improvement of the mathematical proof skills of the prospective teachers. 
 

Identification of the proof process in the Abstract Algebra course based on the CT stages 

The proof process of the prospective teachers in abstract algebra was explored based 

on their written answers and interviews, with the latter being intended to clarify the former. 

This analysis was conducted based on the contexts of mathematical proof skills indicators 

according to the CT components. The worksheet the prospective teachers worked on 

contained four guidelines representing the contexts of the mathematical proof skills 

indicators, which served to affirm prospective teachers in the construction of the correct 

solution. Based on the initial analysis of each response, three representative responses were 

analyzed in more depth through semi-structured interviews. Figure 4 following is the answer 

of one of the prospective teachers (M1) on the topic of homomorphism. This student M1 

illustrates the type of student who can construct answers correctly based on the CT stages. 

At each component, M1 wrote the proof rules well, which was reinforced by the interview 

process. 
 

 

Translation 

Let C be a set of complex numbers and (C, 

+, x) be a ring. γ: C → C is defined by γ (a + 

bi) = a - bi. Prove that γ is an isomorphism! 

a. What is known and what needs to be 

done? 

Known: C is a set of complex numbers, and 

(C, +, x) is a ring. γ: C → C is defined by γ 

(a + bi) = a - bi. C = {x I x = a + b; a, b € R} 

 

Problem: To prove that γ mapping is an 

isomorphism, which means a 

homomorphism that is injective and 

bijective in nature 

b. What concepts are needed to prove 

the problem? 

The concepts used are: 

1. mapping 

2. injective and surjective mapping 

3. homomorphism 

4. isomorphism 

Figure 4. M1's answer at the decomposition and pattern recognition component 

 

The solution proposed by M1 demonstrated that M1’s initial assumption led them to 

the correct conclusion. By breaking down the proof into smaller stages, M1 redefined (C, +, 

x) as a ring in their language. This was evidenced by M1’s ability to correctly write the set 

C in mathematical notations. Moreover, the indicator "creating more manageable parts" was 

demonstrated by M1 through the identification and arrangement of the components of the 

problem into appropriate categories, namely "known" and "problem." 
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To facilitate the appropriate course of action, M1 articulated a comprehensive and 

logical framework in Part B. The outcomes demonstrated that M1 was capable of identifying 

patterns within the proof to inform the solution process. These analysis results aligned with 

the findings from the interview with M1. 
 

Interviewer : When you wrote the known or unknown parts of the problem, did 

you understand what you were writing or did you just copy it? 

M1 : Understood the problem first, then explained it in my language 

Interviewer : Did you do points a to “d” in order? 

M1 : Yes, because point b helped me do the next point. Point b must be 

done well to execute the steps correctly. 

Interviewer : What were the advantages of working on point b for constructing 

the solution? 

M1 : Enabled more systematic construction of a pathway to arrive at the 

solution. 

 

After formulating the concepts, the steps that had to be taken were identified. The 

next assessment indicator focused on the fundamental aspects of the proof. M1 on 

homomorphism had correctly formulated the necessary steps to prove that the set C is an 

isomorphism. This was demonstrated by a step in which M1 showed that γ is a mapping and 

a homomorphism, which is a requirement for an isomorphism (injective and bijective). For 

more details, see Figure 4. 

The final stage of solution construction was to develop a step-by-step logical 

sequence to efficiently solve each part of the proof. The correctness of the steps written by 

M1 in the previous stages facilitated the completion of this final stage. M1 correctly defined 

the mapping and performed the appropriate algorithm. Furthermore, the homomorphism 

conditions were checked with proper variable manipulation. The term "variable 

manipulation" is used to describe the process of operating or changing variables in an 

equation or mathematical expression to simplify, solve, or resolve a particular problem. This 

process may include a range of operations, such as addition, subtraction, multiplication, 

division, substitution, or other algebraic transformations, to achieve the desired form or 

solution as shown in Figure 5. 
 



 Nurlaelah et al., Improving mathematical proof based on computational thinking components …  98 

 

Translation 

c. What steps are needed to solve the 

problem? 

1. Define the mapping of γ 

2. Check the homomorphism 

properties 

Meeting γ(a + b) = γ(a) + γ(b) 

Meeting γ(ab) = γ(a) · γ(b) 

3. Check the isomorphism 

properties 

Homomorphisms that are injective 

and bijective 

d. Carry out the steps presented in 

section c! 

• Define the mapping of γ 

any x, y ∈ C, hence x = a + bi and y 

= c + di … (for complete answer 

look at the picture) 

• Check the isomorphism 

properties 

γ(x + y) = γ(a + bi + c + di)  

                   = γ(a + c) + (b + d)i) … 

γ(xy) = γ((a + bi)(c + di))  

               = γ((ac + adi + cbi + bdi2)) … 

(for complete answer look at the 

picture) 

Figure 5. M1's answer at the abstraction and algorithmic thinking component 

 

In other cases, there were groups of answers showing that prospective teachers 

managed to complete the component of decomposition, pattern recognition, and abstraction 

but failed to construct a good equation at the algorithmic thinking component. The provision 

of an accurate concept did not guarantee that prospective teachers would arrive at the optimal 

final solution, as illustrated in Figure 5. For example, M2 effectively identified the requisite 

concept for the solution. However, M2 encountered a difficulty in manipulating variables to 

demonstrate that the equation γ(m + ni) is a function and bijective. This is because, at the 

stage of developing a step-by-step logical sequence to solve each part of the proof efficiently, 

it is necessary to demonstrate both shrewdness and accuracy in identifying opportunities to 

arrange the variables sought in optimal ways. M2’s thought process at the decomposition 

and pattern recognition components is shown in Figure 6. 
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Translation 

a. What is known and what needs to 

be done? 

Known:  

C is a set of complex numbers  

     (C, +, x) is a ring 

     γ: C → C is defined by  

     γ(a + bi) = a - bi 

Problem: Is γ an isomorphism? 

b. What concepts are needed to 

prove the problem? 

1. Mapping 

2. Homomorphism 

3. Injective (1-1) 

4. Surjective (onto) 

5. Isomorphism 

Figure 6. M2's answer at the decomposition and pattern recognition components 

 

At the decomposition stage, M2 was doing well in constructing the solution. M2 

could “break the problem down into smaller problems,” as characterized by the arrangement 

of important points derived from the complex problem. M2 systematically arranged the 

important points so that the overall problem could still be properly identified, which satisfied 

the indicator “creating more manageable parts.” This made it easier for M2 to develop 

concepts to be used to arrive at the solution.  

M2 was 'identifying patterns within the proof to guide the solution process' by stating 

the concepts needed to solve the problem in an organized and sequential way. To be able to 

prove that all equations are isomorphic, M2 needed to prove the mapping, homomorphism, 

injective, and surjective first. Figure 6 illustrates M2's thought process at the abstraction and 

algorithmic thinking components. 

At the abstraction components, M2 was 'focusing on fundamental aspects of the 

proof' by emphasizing the important elements making up a valid mathematical proof. This 

was evidenced by clear statements concerning the definitions and theorems of mapping, 

homomorphism, and isomorphism. In addition, M2 also ensured the logical consistency of 

each step. This involved organizing the proof in a systematic format, starting with the 

premise and followed by the argument, as illustrated in M2’s proof that γ is injective in 

Figure 7: “If ∀ a, b ∈ c, γ(a) = γ(b), then a = b, or if a ≠ b, then γ(a) ≠ γ(b). " 
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Translation 

c. What steps are needed to solve the 

problem? 

1. Proof that γ is a mapping 

∀a, b ∈ c. ex: a = b → γ(a) = γ(b) 

2. Proof that γ is a homomorphism  

∀a, b ∈ c, the following apply: 

γ(a + b) = γ(a) + γ(b) 

γ(ab) = γ(a) · γ(b) 

3. Proof that γ is injective 

If ∀a,b ∈ c with γ(a) = γ(b), then 

a = b, or if a ≠ b, then γ(a) ≠ γ(b) 

4. Proof that γ is onto 

∀a, b ∈ c, ∃ b ∈ c → γ(b) = a or 

Rγ: codomain (c) 

d. Carry out the steps presented in 

section c! 

1. … 

2. Proof that γ is a homomorphism 

∀(m + ni), (p + qi) ∈ c, the 

following apply: 

γ((m + ni) + (p + qi)) = γ(m + ni) 

+ γ(p + qi) 

γ((m + ni) + (p + qi)) = m - ni + p 

- qi … 

(for complete answer look at the 

picture) 

Figure 7. M2's answer at the abstraction and algorithmic thinking components 

 

In addition to systematic organization, proof requires the selection of appropriate 

techniques, such as direct proof, indirect proof, or contradiction proof, according to the 

context of the problem. Errors in the choice of proof techniques can hinder the preparation 

of arguments. In addition, it is important to be clever in the manipulation of variables. The 

correct manipulation of variables is key to mathematical proof, especially in the process of 

simplifying expressions and solving equations. M2 could not prove that γ is a 

homomorphism because they did not finish manipulating the variables. M2 failed to 

recognize the important relationship between the variables, which meant that the technique 

used did not lead to the final solution.  

The data derived from the analysis of prospective teachers' written test responses 

were supported by interview data. The following interview excerpt provides an illustrative 

example. 
 

Interviewer : Were points a to d useful for solving the problem? 

M2 : They helped you work through step d more easily. 

Interviewer : What stage was hardest to work on? 
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M2 : Point d, because it required the ability to manipulate numbers. It 

takes a lot of practice with problems of this sort. 

 

Based on the results of the interview obtained information that students have 

difficulty in manipulating numbers due to limited ideas, so what is needed in opening their 

horizons is to do more problems with different types. 
 

3.2. Discussion 

Computational thinking (CT) can help prospective teachers overcome difficulties in 

constructing mathematical proofs on abstract algebra concepts. CT can contribute to mental 

processes in not only instrumental but also more important and conceptual ways, which 

affects the way of working and thinking. This notion is supported by research (Lee et al., 

2024; Masfingatin & Maharani, 2019) which states that work steps arranged based on CT 

components can improve students' mathematical reasoning, problem-solving, and thinking 

systems. 

Computational thinking (CT) approaches, constructed in the form of questions, can 

guide prospective teacher to envisage novel problem-solving strategies and evaluate new 

solutions. This is achieved by applying algorithms, decomposition, abstraction, and logic to 

solve complex problems (Masfingatin & Maharani, 2019; Wu et al., 2024). Decomposition 

is a fundamental concept in CT, whereby the essential features of a problem are identified 

and irrelevant details are disregarded (Coşkun et al., 2024). The ability to define the problem 

is required in the investigation of complex systems (Salwadila & Hapizah, 2024). 

Meanwhile, pattern recognition is defined as the process of establishing relationships and 

identifying patterns. The ability to identify patterns is a valuable skill in several contexts, 

particularly in one where prospective teachers are required to discern regularities and 

establish rules. In the field of abstract algebra, for instance, patterns can be identified through 

the examination of numerical regularities (Calado et al., 2024). The capacity to apply 

modeling concepts is also crucial for the development of suitable solutions. 

The next component is abstraction, which is the capacity to conceptualize and 

represent an idea or process in more general terms by emphasizing the salient aspects of the 

idea. It is defined as the process of developing descriptive and representative models 

(Csizmadia et al., 2015). Therefore, abstraction represents a principal means of applying 

computational power to mathematical and scientific problems. The final stage, the ability to 

create appropriate algorithmic systems to build models, is of great importance in 

mathematics, as there is often more than one possible course of action to construct a solution 

(Curzon & McOwan, 2017). Even if two different methods produce the same correct result, 

other aspects must be considered when using these methods. Based on these four stages, CT 

analysis focuses on an inclusive examination of how the system and its constituent parts 

interact and relate to each other as a whole (Assaraf & Orion, 2005). 

CT can assist prospective teachers in developing critical thinking skills and new ways 

of thinking solve complex problems even on difficult topics such as abstract algebra course. 

The integration of CT in learning, particularly in mathematics, has been a subject of 

extensive research and has been demonstrated to enhance students' mathematical abilities 
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and problem-solving skills (Chevalier et al., 2020; Gabriele et al., 2019; Masfingatin & 

Maharani, 2019; Rodríguez-Martínez et al., 2020). The CT model demonstrates ideas that 

lead students to a deeper understanding of mathematical concepts. Therefore, the application 

of CT in the learning of abstract algebra can help students develop problem-solving skills 

and overcome difficulties in constructing mathematical proofs (Cetin & Dubinsky, 2017; 

Kilhamn et al., 2022; Rodríguez-Martínez et al., 2020). Another advantage of employing 

computational thinking in the teaching and learning process is that the abstraction and 

reasoning skills that are involved will enhance students' intellectual abilities (Wing, 2006). 

The integration of CT components into learning, for instance in the form of worksheets 

which are structured with attention to the stages of CT thinking, can facilitate students' 

performance on tasks. 

The use of worksheets based on CT components enables students to develop the 

capacity to think systematically. The CT components facilitate the simplification of 

problems and the systematic construction of solutions. CT empowers all students to 

conceptualize, analyze, and solve complex problems more effectively by selecting and 

applying appropriate strategies and tools (Wilkerson & Fenwick, 2016). Furthermore, the 

questions presented at each stage of the worksheet minimize the likelihood of errors in the 

construction of solutions. This is because the components of CT thinking allow students to 

cross-check the concepts used, thus preventing any errors in the construction of solutions. 

The worksheet guides students to carry out proofs based on the components of computational 

thinking, which in turn familiarizes students with the construction of precise and systematic 

proofs. 

Nevertheless, difficulties to prove persist at each component of CT (Doruk & Kaplan, 

2015; Selden & Selden, 2008). In decomposition, the primary challenge is the inability to 

comprehend the problem. Indeed, the capacity to grasp the problem represents the initial step 

in conceptualizing and formulating solutions. Ultimately, some students merely reiterate the 

salient details of the problem. However, rewriting these crucial elements can also facilitate 

the identification of the problem. At the very least, the student's attention is directed toward 

the significant information that has been documented. 

Furthermore, at the components of pattern recognition, the difficulty that arises is to 

determine the concept that is in accordance with the pattern formed. A lack of understanding 

of the theoretical concepts that have been learned becomes an obstacle in the process of 

proving (Belay et al., 2024). As a result, students experience a deadlock when faced with 

problems. Finally, difficulties at the algorithmic thinking stage occur due to students' 

inexperience in manipulating variables. Variable manipulation is closely related to algebraic 

operations, and therefore the possibility of this occurrence is due to students' lack of practice 

in working on mathematical problems. Algebraic manipulation itself is a challenging activity 

as it requires problem-solving skills on non-routine problems. 
 

4. CONCLUSION 

The use of worksheets integrated with CT enables students to modify the process of 

proving. This is because these worksheets facilitate the acquisition of the skills required to 

construct proofs by encouraging students to compile and elaborate on CT components. The 
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CT component is designed in the form of questions that can construct students' thinking 

processes in proving algebraic problems. The improvement in the ability to prove in this 

study was observed based on the first and second test scores after the learning process. This 

means that the mathematical proof process in algebra courses can be supported by integrating 

the CT component into the worksheet used. The prospective teacher's thought process of 

proving algebraic problems with the help of decomposition questions on CT, students can 

translate and simplify the problem well. The second direction of pattern recognition based 

on CT components can help students find patterns based on the statements made. 

Furthermore, the abstraction component helps students to use appropriate concepts to solve 

proof problems. Finally, the algorithmic thinking component helps students construct a 

systematic and orderly solution algorithm without missing any steps. However, some of the 

difficulties that arise at this stage are difficulties in manipulating variables to reach a 

solution. The results of this study can be used to develop strategies to help students construct 

and carry out proofs, particularly in algebraic structure courses. 
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