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Abstract 

This study validates the superiority of individual learning over peer collaborative learning when studying 

worked examples in a multivariable calculus course. It examines cognitive load dimensions and the quality 

of students' conceptual understanding to provide empirical recommendations for instructional design in 

higher education. A mixed-method approach with a concurrent triangulation design combined quantitative 

and qualitative analyses. The quantitative aspect involved experimental comparisons of cognitive load, 

comprehension tests, and surveys, while the qualitative analysis focused on interaction patterns through 

discussion transcripts. Participants included 131 undergraduate students (41 male, 90 female, average age 

19.25 years) from a state university in Banten, Indonesia. They were randomly assigned to individual (52 

students) and peer collaboration (79 students) groups. The results revealed that students in the individual 

learning condition achieved significantly better comprehension than those in peer collaboration, though 

cognitive load showed no difference between the groups. Peer collaboration presented notable challenges in 

supporting the effectiveness of worked-example learning. In most cases, collaboration was either ineffective 

or partially effective. However, instances of effortful understanding and clarification-seeking suggest 

collaboration may be supportive if instructional design encourages deeper engagement and problem-

solving. These findings provide insights for optimizing collaborative strategies in worked-example learning. 
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1. INTRODUCTION 

Multivariable calculus is one of the courses offered in all mathematics education 

program. This course requires prerequisite knowledge, including differential and integral 

calculus. Moreover, multivariable calculus serves as a foundation for other advanced 

mathematics courses and even interdiciplinary subjects. This highlights the importance of 

mastering the course, as students who struggle with it are likely to face challenges in 
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comprehending more advanced mathematical concepts and applications (Hashemi et al., 

2015; Kashefi et al., 2012; Martínez-Planell & Trigueros, 2021; Wagner, 2018).  

The fundamental difference between multivariable calculus and differential and 

integral calculus (commonly referred to as single-variable calculus) lies in the change of the 

function's domain, which shifts from a single variable (𝑓: ℝ →  ℝ) to multiple variables 

(𝑓: ℝ𝑛 →  ℝ) (Jones & Dorko, 2015). While students are expected to have studied these 

prerequisites, in practice, they often encounter difficulties in mastering topics within 

multivariable calculus (Khemane et al., 2023). This course is frequently perceived as 

complex and challenging for students. This means that when they learn the content in this 

course, they can be considered as novice learners.  

For example, when students are faced with the problem of proving the limit value of 

a two-variable function (formally using 𝜖 − 𝛿) as follows: lim
(𝑥,𝑦)→(1,3)

(2𝑥 + 3𝑦) = 11. To 

prove this limit is correct, students must be able to extend the concept of distance in ℝ, to 

the concept of distance (norm) in ℝ2. Additionally, students must be able to geometrically 

illustrate the function in ℝ3. Another example is when students are asked to determine the 

limit value: lim
(𝑥,𝑦)→(0,0)

𝑥𝑦

𝑥2+𝑦2 . In their mental, the concept of limits they are familiar with 

involves left and right hand limits. However, these concepts cannot be applied to solve the 

limit of a two-variable function. Instead, understanding the concept of a limit around a point 

is required, the limit value at the point (0,0) must be approached from various directions. 

Similarly, an example arises when students solve problems involving double integrals. 

Khemane et al. (2023) highlight students’ difficulties in swapping the order of integration. 

These examples demonstrate the complexity of solving multivariable calculus problems, 

where many mathematical concepts are involved, such as three-dimensional geometry, 

vectors, the use of geometric and graphical representations, and, of course, a deep 

understanding of functions. 

Beyond the inherent difficulty of the material, other significant factors that are 

believed to influence students' understanding are related to didactic and pedagogical aspects. 

The didactic aspect concerns how concepts are presented to students, whereas the 

pedagogical aspect involves guiding students in terms of their social, emotional, moral, and 

intellectual development. In the information processing theory (a sub-theory of cognitivism 

paradigm), the failure of information to become knowledge occurs when the information 

processed in working memory cannot be stored in long-term memory (Sweller, 2022, 2024; 

Sweller et al., 2019). According to this learning theory, when learning something complex, 

working memory becomes overloaded with the abundance of new information being 

processed, leading to a condition known as cognitive overload. This condition arises because 

human working memory is highly limited (Baddeley, 2000, 2010, 2012, 2017, 2019; 

Baddeley & Larsen, 2007). Moreover, classic studies by Miller (1956) and Peterson and 

Peterson (1959) state that human working memory can only process approximately  7±2  

chunks of information and can retain them for only about 20 seconds. 

In the learning process, one method proven to reduce cognitive load is the worked-

example approach. The use of worked-examples has been extensively researched and 

demonstrated to reduce cognitive load (particularly extraneous cognitive load) experienced 
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by students (Asmara et al., 2024; Booth et al., 2013; Chen et al., 2019; Hu et al., 2015; 

Kalyuga, 2011; Lee & Ayres, 2024; Renkl, 1997; Renkl & Atkinson, 2010; Rourke & 

Sweller, 2009; Sweller, 2011). Aligned with these studies, Santosa et al. (2018) conducted 

research to assist students in understanding the concepts and solving problems in 

multivariable calculus by modifying textbooks and presenting them in the form of worked-

examples. These worked-examples were presented in a tabular format containing step-by-

step problem-solving procedures accompanied by explanations for each step (Table 1 for 

example). Furthermore, the study measured students' cognitive efficiency, which links 

cognitive load to their knowledge acquisition. 

Table 1. Worked-example with explanation 

No Solution Steps Explanation 

1 
∫ ∫ (4 − 𝑥2 − 𝑦2)−

1
2

√1−𝑥2

0

𝑑𝑦𝑑𝑥
1

0

 
Problem 

2 

 

This plot is obtained from the integration 

limit. 

The interval 𝑦 is located from  𝑦 = 0 to 𝑦 =

√1 − 𝑥2, 

so,  

𝑥2 + 𝑦2 = 1 

↔ 𝑦2 = 1 − 𝑥2   

↔ 𝑦 = √1 − 𝑥2 

It is a semicircle above 𝑥-axis, with radius 

(𝑟 = 1). 

in polar coordinates,  𝑟 is located from 𝑟 = 0 

to 𝑟 = 1 

 

The boundary of 𝑥, located from 𝑥 = 0 to 

𝑥 =1, transforming to polar coordinat, 𝜃 = 0 

to 𝜃 =
𝜋

2
. 

3 
∫ ∫ (4 − 𝑟2)−

1
2

1

0

𝑟 𝑑𝑟 𝑑𝜃

𝜋
2

0

 
Changing to polar coordinates, remember that: 

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃 ,  𝑥2 + 𝑦2 = 𝑟2 , and 

𝑑𝑦𝑑𝑥 changed to 𝑟 𝑑𝑟 𝑑𝜃 

Notice the change in the integral boundary. 
 

 

In students' cognition, worked-examples elicit the process of self-explanation, which 

is a mental process involved in solving a problem. Self-explanation functions as verbal/non-

verbal mediation that supports the transformation between various external representations 

of the mathematical problems being addressed (Bichler et al., 2022; Hodds et al., 2014; 

Neuman & Schwarz, 2000; Renkl, 2017; Rittle-Johnson et al., 2017). Thus, in learning a 

concept or solving a mathematical problem, the mental process of self-explanation can act 

as a moderator or even a mediator for students’ success in understanding and solving 

problems. 
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Regarding the importance of self-explanation in learning, Santosa et al. (2019) 

investigated the relationship between self-explanation and germane load. Germane load 

refers to the relevant cognitive load devoted to the process of acquiring knowledge from the 

information being learned (Costley & Lange, 2017; Debue & van de Leemput, 2014; 

Kalyuga, 2011; Paas & van Gog, 2006). Returning to the research by Santosa et al. (2019), 

to enhance self-explanation, worked-examples were designed with prompting in the form of 

questions to guide students in generating self-explanations at each step of the problem-

solving process (Table 2 for example). The types of prompts developed were justification-

based prompts and step-focused prompts (Conati, 2016; Hausmann & Chi, 2002; Hausmann 

et al., 2009). The study concluded that students who applied the worked-example method 

with self-explanation prompting achieved better test results compared to those who studied 

worked-examples without self-explanation prompting. 

Table 2. Worked-example with prompting 

No Solution steps Prompting 

1 Suppose 𝑓 is a piecewise function and 

suppose: 

𝑓(𝑥) = {

1, if 0 ≤ x ≤ 3, 0 ≤ y ≤ 1
2, if 0 ≤ x ≤ 3, 1 < y ≤ 2 
3, if 0 ≤ x ≤ 3, 2 < y ≤ 3

 

Calculate ∬ 𝑓(𝑥, 𝑦)𝑑𝐴
𝑅

 with 𝑅 = {(𝑥, 𝑦): 0 ≤

𝑥 ≤ 3, 0 < 𝑦 ≤ 3} 

Problems given. 

2 Sketch of function: 
 

 
 

Can you explain and sketch the 

construction of the function? 

3 Domain: 

𝑅1 = {(𝑥, 𝑦): 0 ≤ 𝑥 ≤ 3, 0 ≤ 𝑦 ≤ 1} 

𝑅2 = {(𝑥, 𝑦): 0 ≤ 𝑥 ≤ 3, 1 ≤ 𝑦 ≤ 2} 

𝑅3 = {(𝑥, 𝑦): 0 ≤ 𝑥 ≤ 3, 2 ≤ 𝑦 ≤ 3} 

Take notice to the origin area 

specified in the first step. How can 

this be obtained? 

 

 

4 Double integral expression: 

∬ 𝑓(𝑥, 𝑦)
𝑅

𝑑𝐴 = ∬ 𝑓(𝑥, 𝑦)𝑑𝐴
𝑅1

+ ∬ 𝑓(𝑥, 𝑦)
𝑅2

𝑑𝐴

+ ∬ 𝑓(𝑥, 𝑦)𝑑𝐴
𝑅3

 

Recall the double integral 

properties. What properties are 

applied in this step? 
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No Solution steps Prompting 

5 Evaluating integral values: 

= 1 𝐴(𝑅1) + 2 𝐴(𝑅2) + 3 𝐴(𝑅3) 

= 1.3 + 2.3 + 3.3 = 18 

So, specifically, what does this step 

tell you? 

 

Based on the explanation, individually, the worked-example approach undoubtedly 

enhances students' understanding of multivariable calculus concepts; however, further 

research is needed to explore its effectiveness in a collaborative (especially peer) learning 

context. In peer-collaborative learning environments without the use of worked-examples, 

studies have indicated improvements in learning outcomes. For instance, students learning 

statistics, geometry, algebra and calculus through interactive presentation styles, group work 

with discussions and feedback, and group presentations of solutions have shown positive 

effects on test results and academic success (Fauziah et al., 2022; Lugosi & Uribe, 2022; 

Ramadoni & Chien, 2023; Widodo et al., 2023). Another study found that students engaged 

in collaborative learning in calculus achieved higher graduation rates and developed better 

academic and movitation (Anitha & Kavitha, 2023; Fayowski & MacMillan, 2008). 

However, research by Merkel and Brania (2015) presents a contrasting view, claiming that 

the benefits of collaborative learning on learning gains and retention in calculus course have 

not been substantiated. Furthermore, research into peer tutoring (also in calculus course) has 

shown that most students tend to focus more on procedural and computational knowledge 

rather than conceptual understanding (Yaman, 2019). 

In contrast to peer collaboration studies without worked-examples, research 

involving worked-examples in collaborative learning settings tends to yield similar 

conclusions: worked-examples are more effective in individual settings than in collaborative 

ones. In an initial study by Retnowati et al. (2010), while the results were statistically 

insignificant (close to significant), collaborative learning was suggested to offer potential 

benefits over individual learning when using worked-examples in a geometry theorem study. 

However, subsequent research failed to support this claim, demonstrating that individual 

learning outperforms collaborative learning with worked-examples (the material studied 

being algebra), firmly concluding that collaborative learning does not enhance the 

effectiveness of worked-examples (Retnowati et al., 2017). Similar findings have been 

reported in non-mathematical domains, such as biology (heredity), where individual learning 

proved more effective than collaborative learning in terms of cognitive efficiency, linking 

mental effort with test performance (Kirschner et al., 2009). A subsequent study (Kirschner, 

Paas, Kirschner, et al., 2011), also in the biology domain, corroborated this result. 

Previous quantitative studies have consistently demonstrated that worked-example-

based learning is more effective in individual contexts than in collaborative settings, 

particularly in enhancing cognitive efficiency and facilitating transfer of understanding. 

However, these studies predominantly focus on school-level learners, with limited 

exploration of higher education contexts, where learning dynamics are more complex. This 

research aims to validate the superiority of the individual learning over peer collaborative 

learning when studying with worked-example in higher education, particularly in the 

multivariable calculus course, by examining cognitive load dimensions and the quality of 

students' conceptual understanding. Furthermore, this study investigates the inherent 
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limitations of peer collaboration in supporting the effectiveness of worked-example-based 

learning, aiming to provide empirical recommendations for designing instructional strategies 

better aligned with the demands of higher education. 

 

2. METHOD 

2.1. Research Approach and Design 

The study employed a mixed approach to obtain a comprehensive picture of the 

limitedness of peer collaboration in understanding worked-example on multivariable 

calculus. This approach includes both quantitative and qualitative approaches. The 

quantitative aspect involved an experiment study that measured cognitive load and 

understanding of the concept learned and surveyed in peer collaboration, while the 

qualitative aspect analyzed group interactions and dynamics through discussion transcripts. 

The research design adopted in this study is a concurrent triangulation design (see Figure 1). 
 

 

Figure 1. Concurrent triangulation design (Creswell & Clark, 2018) 

 

2.2. Participants 

One hundred thirty-one undergraduate students (41 boys and 90 girls) with an 

average age of 19.25 years old from a state university in Banten Province, Indonesia, took 

part in this research. The students were divided into two conditions, individual learning (52 

students) and peer collaboration (79 students), which were assigned randomly. Students who 

learn peer collaboration were grouped randomly with 4 or 5 members (19 groups). 
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2.3. Research Instruments and Procedures 

The research included three phases: a preparation phase, an implementation phase, 

and a data analysis phase. During the preparation phase, worked-examples on multiple 

integral topics were developed using materials sourced from textbooks compiled based on 

prior research (Santosa et al., 2024). Additionally, comprehension tests (pre-tests and post-

tests) were designed to assess students' understanding after engaging with the worked-

examples, rating scale mental effort for cognitive load measurement (Kester et al., 2010; 

Oktaviyanthi et al., 2024; Paas, 1992; Paas & Van Merrienboer, 1993; Tuovinen & Paas, 

2004), surveys using questionnaires, and tools for recording discussions during peer 

collaboration were also prepared. 

The implementation phase comprised four main stages. The first stage involved a 

pre-test (word problem) conducted before the intervention to assess students' initial 

understanding of the material. In the intervention stage, the experimental group studied 

worked-examples collaboratively in groups, while the control group completed the same 

tasks individually. Students worked on three worked-examples for each topic—double 

integrals over rectangular regions, iterated integrals, and double integrals over non-

rectangular regions—within a 15-minute time limit per topic. All group discussions were 

recorded. Subsequently, a post-test (identical to the pre-test) was administered immediately 

after the intervention to evaluate students’ final understanding, with test reliability 

determined using Cronbach’s Alpha (α = 0.852). Additionally, a nine-point subjective rating 

scale, was used to measure cognitive load after both the pre-and post-tests, with reliability 

results shown α = 0.820 (see Table 3). At the end of the third test, students in the peer-

collaborative condition completed a Likert-scale questionnaire (1 = strongly disagree to 5 = 

strongly agree) assessing aspects of engagement, effectiveness, confidence, feedback 

quality, and overall experience. Each aspect comprised three questions, with internal 

consistency reliabilities of 0.70, 0.66, 0.85, 0.79, and 0.65, categorized as high to very high. 

Table 3. Rating scale mental effort 

Scale 1 2 3 4 5 6 7 8 9 

Original 

version 

(English) 

Very, 

very 

low 

Very 

low 

Low Rather 

low 

Neither 

low 

nor 

high 

Rather 

high 

High Very 

High 

Very, 

very 

high 

 

In the data analysis stage, three main processes were conducted: quantitative data 

analysis, qualitative data analysis, and data integration. In the first stage, quantitative data 

analysis involved examining, analyzing, and interpreting data from pre-tests, post-tests, 

surveys, and cognitive load measurements. Statistical tests, such as descriptive statistics, and 

mean differences, were used to compare the experimental and control groups. The second 

stage focused on qualitative data analysis, which included transcribing recorded discussions 

and coding the data using thematic analysis (Braun & Clarke, 2006) to identify patterns in 

interaction and collaboration. This step included a review of the preliminary transcription to 

understand the conversational context within each group. Subsequently, the transcriptions 

were analyzed using both qualitative research software and manual techniques. A hybrid 
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coding method was adopted, integrating inductive coding (identifying themes from the 

transcribed data) and deductive coding (deriving themes from theoretical frameworks and 

literature to address the research questions). The generated codes were managed, rechecked, 

and adjusted as necessary to support the development of a conceptual scheme for data 

categorization and re-categorization. Once the data categorization was completed, analytical 

insights were documented through memoing, which served to articulate and refine the 

analysis process. Key themes were identified during this stage to structure the data and derive 

meaningful results. These themes played a critical role in determining significant findings 

from the collected data. In the final stage, data integration was conducted by comparing and 

combining the results from the quantitative and qualitative analyses to draw comprehensive 

conclusions about the limit of peer collaboration when studying worked-example. 

 

3. RESULTS AND DISCUSSION 

3.1. Results 

3.1.1. Students’ Pre-test Results 

The pre-test was administered for each sub-topic, including double integrals over 

rectangular regions, iterated integrals, and double integrals over non-rectangular regions. 

The results indicated no significant differences in the pre-test score between the two class 

conditions (individual vs. peer collaboration) for double integrals over rectangular regions 

(tstat = 0.099, df = 129, at α = 0.05) iterated integrals (tstat = –0.173, df = 129, at α = 0.05) and 

double integrals over non-rectangular regions (tstat = 0.090, df = 129, at α = 0.05). The means 

and standard deviations of the pre-test scores are presented in Table 4. 

Table 4. Means and standard deviations of pre-test and post-test 

Condition 
Pre-test Post-test 

1 2 3 1 2 3 

Individual 18.38 

(4.35) 

15.79 

(4.39) 

18.81 

(3.79) 

86.15 

(4.76) 

81.96 

(4.73) 

83.31 

(4.25) 

Peer-Collaboration 16.87 

(5.54) 

15.91 

(3.69) 

18.75 

(3.78) 

77.16 

(6.63) 

82.33 

(4.52) 

77.95 

(5.60) 

1= double integrals over rectangular regions, 2=iterated integrals,  3=double integrals over non-rectangular regions 
 

3.1.2. Students’ Post-test Results 

The post-test was conducted after students studied worked-example for each sub-

topic, including double integrals over rectangular regions, iterated integrals, and double 

integrals over non-rectangular regions. The result revealed significant differences in the 

post-test scores between the two class conditions (individual vs. peer collaboration) for 

double integrals over rectangular regions (tstat = 8.441, df = 129, at α = 0.05) and double 

integrals over non-rectangular regions (tstat = 5.870, df = 129, at α = 0.05). However, no 

significant difference was found for iterated integrals (tstat = –0.447, df = 129, at α = 0.05). 

The means and standard deviations of the post-test are presented in Table 4. 
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3.1.3. Students’ Cognitive Load Results 

Cognitive load measurement was conducted immediately after students completed 

the pre-test and post-test. Regarding cognitive load during the pre-test, the results indicated 

no significant differences between the two class conditions (individual vs. peer 

collaboration) for double integrals over rectangular regions (tstat = 0.286, df = 129, at α = 

0.05), iterated integrals (tstat = –1.323, df = 129, at α = 0.05), and double integrals over non-

rectangular regions (tstat = 0.410, df = 129, at α = 0.05). Similarly, for cognitive load during 

the post-test, the results showed no significant differences for double integrals over 

rectangular regions (tstat = –0.274, df = 129, at α = 0.05) and iterated integrals (tstat = –1.189, 

df = 129, at α = 0.05). However, a significant difference was found for double integrals over 

non-rectangular regions (tstat = –8.118, df = 129, at α = 0.05). The means and standard 

deviations of cognitive load are presented in Table 5. 

Table 5. Means and standard deviations of cognitive load ratings 

Condition 
Cognitive Load (Pre-test) Cognitive Load (Post-test) 

1 2 3 1 2 3 

Individual 7.69 

(1.11) 

7.12 

(0.78) 

6.92 

(0.81) 

5.10 

(1.40) 

5.31 

(1.13) 

5.88 

(0.78) 

Peer-Collaboration 7.63 

(1.12) 

6.91 

(0.79) 

6.86 

(0.86) 

5.14 

(1.38) 

5.59 

(1.15) 

7.06 

(0.82) 

  1= double integrals over rectangular regions, 2=iterated integrals,  3=double integrals over non-rectangular regions 
 

3.1.4. Questionnaire 

In the peer-collaborative class, students rated their perceptions of the peer 

collaboration process during worked-example learning across five aspects: engagement, 

effectiveness, confidence, feedback quality, and overall experience (see Table 6). For 

engagement, the most frequent response was 3 (neutral), with an average percentage of 

69.33%. For effectiveness, the most frequent response was 2 (disagree), at 70.9%. For 

confidence, the most frequent response was 4 (agree), with an average of 58.7%. Regarding 

feedback quality, the most frequent response was 2 (disagree), at 65%. Lastly, for overall 

experience, the most frequent response was 2 (disagree), with an average of 44.7%. 

Table 6. Students’ perceptions in peer collaborative 

Aspects Questions 
Responses* (%) 

1 2 3 4 5 

Engagement I actively participate in group discussion. - 12.7 68.4 19.0 - 

My peers encouraged me to contribute to the 

discussion. 

- 22.8 67.1 10.1 - 

Our group stayed focused on task during most 

of the sessions. 

- 7.6 72.2 19.0 1.2 

Effectiveness Peer collaboration helped me understand 

worked-example better than studying alone. 

12.7 72.1 15.2 - - 

Working with peers clarified difficult concepts 

in multivariable calculus. 

8.9 78.5 12.6 - - 

Group discussion exposed me to alternative 

problem-solving strategies. 

21.5 62.0 16.5 - - 
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Aspects Questions 
Responses* (%) 

1 2 3 4 5 

Confidence I feel more confident solving multivariable 

calculus problem after the group session. 

- - 41.8 51.9 6.3 

Peer collaboration reduce my anxiety about 

tackling complex mathematicsal problem. 

- - 22.8 67.1 10.1 

I feel more comportable explaining 

mathematical concepts to others after these 

session. 

- 2.5 31.6 57.0 8.9 

Feedback 

Quality 

My peer provided constructive feedback during 

discussion. 

7.6 65.8 25.3 1.3 - 

The feedback from my peers helped me correct 

my mistakes. 

2.5 69.7 27.8 - - 

Our group provided a supportive environment 

for learning and discussion. 

5.1 59.5 35.4 - - 

Overall 

Experience 

I would recomend peer collaboration for 

learning mathematical concepts using worked-

example. 

- 10.1 72.2 17.7 - 

Peer collaboration should be integrated as a 

regular activity when learn by worked-

examples. 

17.7 64.6 17.7 - - 

My overall experience with peer collaboration 

was positif when studying worked-examples. 

17.7 59.5 22.8 - - 

*1 = strongly disagree to 5 = strongly agree 
 

3.1.5. Peer Discussion Analysis 

Based on the transcription data obtained from the recoding of students’ conversations 

in each peer discussion group, five major categories with distinct subcategories emerged, as 

presented in Table 7. 

Table 7. Coding scheme with categories and subcategories data (% frequency) 

Categories 
Subcategories 

(% frequency) 
Description 

Collaboration Modality: 

How students interact in 

peer when 
comprehending worked-

example 

1. Individual 

Processing (0) 

Students read independently without any 

interaction. 

2. Passive Aggrement 

(10.52) 

Students only agree without providing new 

information. 

3. Surface Level 

Discussion (47.37) 

Students discuss the worked-example but 

merely repeat the available information. 

4. Misguided/ 

Elaborative 

Discussion (42.11)  

Students discuss the worked-example, which 

either lead to misconceptions or, in rare cases, 

result in deeper interpretations. 

Cognitive Engagement: 

To what extent students 

are cognitively engage in 
understanding the 

worked-example 

1. Minimal 

Engagement (5.26) 

No significant cognitive activity is 

demonstrated; students merely  read without 

effort to deeply understand the content. 

2. Redundant 

Processing (52.63)) 

Students repeat the content of the worked-

example without providing further analysis. 

3. Effortful 

Understanding 

(42.11) 

Students attempt to understand by asking 

questions or rephrasing the content with slight 

additional thoughts. 
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Categories 
Subcategories 

(% frequency) 
Description 

4. Deep 

Understanding (0) 

Students demonstrate deeper understanding 

by connecting worked-example (a rare 

occurence). 

Interaction Quality: The 

quality of interaction in 
discussion on the worked-

example 

1. Minimal 

Interaction (36.84) 

No meaningful discussion occurs; students 

merely read together without further 

exploration. 

2. Redundant 

Interaction (10.53) 

The worked-example is repeated without any 

addition of new information. 

3. Clarification 

Seeking (52.63) 

Students ask questions to clarify their 

understanding due to confusion. 

4. Constructive 

Interaction (0) 

The discussion provides additional insight 

beyond those presented in the worked-

example (a rare occurence) 

Cognitive Load: The 
cognitive load arising 

from collaboration in 

understanding the 
worked-example 

1. Underload (57.89) 

 

Students do not face challenges in 

understanding and feel no to engage in 

discussion. 

2. Optimal Load (0) Discussion is utilized to explain difficult 

parts. 

3. Extraneous 

Overload (42.11) 

Discussion hampers understanding as the 

information from the worked-example is 

already sufficiently clear. 

4. Intrinsic Overload 

(0) 

Student continue to struggle with 

comprehension despite the presense of the 

worked-example 

Effectiveness of 

Collaboration: To what 
extent collaboration 

enhances students’ 

understanding of the 
worked-example 

1. Innefective (57.89) No additional benefit is gained from the 

discussion 

2. Partially Effective 

42.11) 

Some clarification is provided, but it does not 

significantly enhance understanding 

3. Effective (0) The discussion helps improve understanding 

of the worked-example (a rare occurence) 
 

Collaboration Modality 

Based on the collaboration modality category, when students studied the worked-

example, it was identified that they only agreed without contributing new information 

(passive agreement). Students discussed the worked-example but merely repeated the 

available information (surface-level discussion). In some cases, discussions led to 

misconceptions (misguided discussion). 
 

Example conversation: 
 

Student 1 : “So in this worked-example, we are asked to calculate a triple integral with 

boundaries x from 0 to 2, y from 1 to 3, and z from 0 to 4." 

Student 2 : “Yes, it means that we can immediately integrate it with first x, then to y, then to z, 

right?” 

Student 3 : “Wait, aren’t we supposed to always start from the outer integral to the inner one? 

So we should begin with z first, then y, and finally x? 

Student 4 : “Yeah, it seems like it has to be in that order, from the outer to the inner integral, 

and it can’t be switched." 
 

(Misconception – the student incorrectly assumes that order of integration must always proceed 

from the outer to the inner integral without considering the given limits) 
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Student 1 : “But the boundaries have been determined in the question, we can't arbitrarily 

change the order, you know.” 

Student 2 : “Yes, but if we start from the outer integral first, the result will be correct in the 

end.” 
 

(Misguided Discussion – the discussion leads to a misconception, disregarding the flexibility in 

choosing an appropriate order of integration) 
 

Student 3 : “As far as I know, we can't change the order, otherwise the result will be completely 

different!” 

Student 4 : “Okay, then let’s jus follow this method. Start with the outer integral first to be safe” 
 

(The discussion concludes with an unclarified misconception, reinforcing the misunderstanding)  
 

This conversation illustrates how misconceptions in group discussions can lead to 

incorrect understanding, particularly when no group members is able to correct or clarify 

incorrect/inaccurate information 
 

Cognitive Engagement 

Under the cognitive engagement category, students demonstrated minimal 

engagement by merely reading without making efforts to understand deeply (minimal 

engagement). They repeated the worked-example without further analysis (redundant 

processing). However, there were instances where students attempted to understand by 

asking questions or re-explaining with slight additional thoughts (effortful understanding). 
 

Example conversation: 
 

Student 1 : "Wait, this step looks complicated. Why do we need to use this method? 

Student 2 : "Hmm... maybe it's because the problem involves variables similar to those in the 

worked-example." 

Student 3 : "But look at the second example. There’s another method used for a different case." 

Student 4 : "Oh, I see. So, if the conditions change, the method changes too." 

Student 1 : "Exactly! Now, let's check the final result." 
 

This dialogue illustrates effortful understanding as students engaged in deeper 

questioning and reasoning. 
 

Interaction Quality 

The quality of interaction during peer collaboration showed minimal engagement, 

with students merely reading together without further discussion (minimal interaction). They 

repeated the worked-example without adding new insights (redundant interaction). In some 

instances, students sought clarification due to confusion (clarification seeking). 
 

Example conversation: 
 

Student 1 : "Ok, in this worked-example, we compute the triple integral. In the first step, we 

define an integral boundary for each variable" 

Student 2 : "Yes, the limits for x are from 0 to 2, for y from 1 to 3, and for z from 0 to 4.” 

Student 3 : “Okay, it means that we just have to integrate it step by step: integral to z, then to y, 

finally to x.” 
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Student 4 : “Yes, just like it’s shown in the worked-example.” (Redundant interaction - merely 

repeating  without adding new insight) 
 

(After a while, the discussion shift to Clarification Seeking as  one of the students notices a 

discrapency in their result) 
 

Student 3 : “Wait, why is the final result different from the one in the worked-example?” 

Student 2 : “Let's check again. There may be a mistake in the first integration step?” 

Student 1 : “Oh, it seems like we forgot to notice that this function depends y on as well. We 

should take into account variables y before integrating with respect to x.” 

Student 4 : “Right! That means we need to be careful aout the order of integration based on the 

given limit.” 
 

(Clarification Seeking – students actively seek clarification regarding their mistake) 
 

Student 3 : “Okay, now it makes sense. If we change the order of the integrations, our result 

matches the worked-example!” 
 

At the beginning of the discussion, the students merely repeated the steps from the 

worked-example without providing additional new understanding. As a result, there was no 

in-depth analysis, only agreeing to the steps that have been written (redundant interaction). 
 

Cognitive Load 

The cognitive load generated from collaboration revealed two conditions. In some 

cases, students did not experience any challenges, feeling no need for discussion (underload). 

In others, discussions overloaded understanding due to the clarity of the information 

provided in the worked-example (extraneous overload). 
 

Example conversation: 
 

Student 1 : "So, the integral bounds are from 0 to 2 for x, and 0 to 3 for y, right?" 

Student 2 : "Yes, just integrate according to the steps in the worked-example." 

Student 3 : "Alright, substitute the function into the integral. That's it, right?" 

Student 4 : "Yes, there's no need for a long discussion. It's straightforward." 
 

After a while, the discussion shifted to irrelevant topics: 
 

Student 2 : "What if we change the upper bound to a different function, like sin x?" 

Student 1 : "Why would we do that? It's not in the problem." 

Student 4 : "Exactly. Changing the bounds would give a different result." 

Student 3 : "Still, it would be interesting to explore other forms, although now we're confused." 

Student 4 : "Yeah, it's getting complicated. Let's just stick to the problem." 
 

Effectiveness 

In terms of learning effectiveness, peer discussions during worked-example learning 

were identified as either ineffective or partially effective. Some clarification occurred but 

did not significantly enhance understanding (partially effective). 
 

Example conversation: 
 

Student 1 : "For this problem, we just need to follow the worked-example, right? Integrate from 

0 to 2, and that's it." 
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Student 2 : "Yes, it's not difficult. Just apply the formula." 

Student 3 : "Right, but why does a constant appear in the final result?" 

Student 1 : "Hmm... maybe it comes from the integral bounds. I'm not sure." 

Student 4 : "Check the worked-example. It explains that the constant comes from the inner 

integral result." 

Student 3 : "Oh, so the inner integral already gives a constant before moving to the next stage." 

Student 2 : "Exactly. That's why the final result includes that constant." 

Student 4 : "Now I understand. Changing the bounds would also change the final result." 
 

This dialogue illustrates partial effectiveness in clarifying understanding. 
 

3.2. Discussion 

The study findings reveal no significant differences in pre-test results between the 

individual and collaborative conditions across topics (double integrals over rectangular 

regions, iterated integrals, and double integrals over non-rectangular regions), with both 

groups demonstrating low achievement. This indicates that students possessed limited prior 

knowledge regarding these topics, suggesting an equivalent baseline of knowledge between 

the two conditions. In contrast, post-test results showed a substantial improvement after 

students engaged with worked-examples, indicating the positive impact of this instructional 

method. This aligns with the well-documented worked-example effect, supported by over 

25 years of research. The effect has been extensively demonstrated in well-defined problems 

such as mathematics and science and more recently in ill-defined domains like language and 

music (Diao & Sweller, 2007; Oksa et al., 2010; Owens & Sweller, 2008; Rourke & Sweller, 

2009).  

Although both conditions experienced significant post-test improvements, individual 

learners outperformed those in peer collaboration groups. Topic-wise, the only exception 

was the iterated integrals topic, where no significant difference was observed. For double 

integrals over rectangular and non-rectangular regions, the individual condition showed 

superior performance. These findings confirm prior studies suggesting that learning worked-

examples individually yields better results than peer collaboration (Kirschner, Paas, 

Kirschner, et al., 2011; Retnowati et al., 2017). 

In terms of students' cognitive load, no overall differences were found between the 

individual and peer collaboration groups in worked-example learning. When analyzed by 

topic, a significant difference was observed only in the double integrals over non-rectangular 

regions topic, while no differences were found for double integrals over rectangular regions 

and iterated integrals. These findings validate previous research, which also reported no 

significant differences in cognitive load between individual and peer collaboration learning 

conditions (Kirschner, Paas, & Kirschner, 2011; Retnowati et al., 2017). 

Furthermore, this study was not solely aimed at validating the effectiveness of 

worked-example learning or the superiority of individual learning over peer collaboration. 

Instead, it sought to investigate the limitations of peer collaboration in studying worked-

examples. The questionnaire revealed that out of five aspects assessed (engagement, 

effectiveness, confidence, feedback quality, and overall experience), only the confidence 

aspect was positively perceived by students during peer collaboration. Students reported 
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increased confidence in solving multivariable calculus problems after group sessions, 

reduced anxiety (particularly with complex problems) and greater comfort in explaining 

mathematical concepts to others. However, these positive perceptions did not extend to the 

other aspects: engagement, effectiveness, feedback quality, and overall experience. 

The limitations of peer collaboration were further examined through peer discussion 

analysis. Findings from peer collaboration in worked-example learning revealed significant 

challenges in achieving collaborative learning effectiveness. Based on a coding scheme 

comprising collaboration modality, cognitive engagement, interaction quality, cognitive 

load, and collaboration effectiveness, the results indicated that collaboration was generally 

ineffective or only partially effective under most circumstances. A detailed analysis of these 

findings follows, highlighting the factors contributing to the limitations of peer collaboration 

in the context of worked-example learning. 

 In the collaboration modality category, most interactions were characterized by 

passive agreement and surface-level discussion, where students simply followed the worked-

example without meaningful engagement, easily agreeing with their peers and participating 

in redundant discussions. This type of collaboration limited opportunities for knowledge 

construction, resulting in minimal reasoning and restricted critical thinking. Additionally, 

misguided discussions emerged, where students deviated from the task's objectives with 

unnecessary discussions, adding complexity that undermined the collaboration process. 

These findings indicate that collaboration modality often fails to stimulate meaningful 

engagement, particularly when students rely too heavily on the information already provided 

in the worked-example. This observation aligns with previous research suggesting that peer 

collaboration offers limited benefits when the task structure is highly guided (Kirschner et 

al., 2006). 

The second category, cognitive engagement, varied across groups, ranging from 

minimal engagement and redundant processing to, in some cases, effortful understanding. 

Minimal engagement occurred when students perceived the task as too easy and required 

little to no mental effort. This aligns with the condition known as underload, where students 

found no need for deeper reflection or critical thinking regarding the material being studied. 

In such cases, engagement was superficial and did not support meaningful learning. 

Conversely, effortful understanding was observed when students sought clarification on 

specific aspects of the worked-example, such as determining the bounds for double integrals. 

Although this behavior indicated increased cognitive effort, it did not consistently lead to 

comprehensive conceptual understanding. The students' efforts often remained focused on 

procedural clarity rather than on constructing deeper insights or reorganizing their existing 

knowledge structures. This highlights a key limitation in worked-example-based 

collaboration: while certain interactions can promote cognitive engagement, they may not 

always be sufficient to foster higher-order understanding without additional instructional 

scaffolding. 

Third, the category of interaction quality was predominantly characterized by either 

minimal or excessive interaction, with limited instances of clarification seeking or 

constructive interaction. Minimal interaction occurred when students engaged with the 

worked-example without further elaboration or exploration. Conversely, excessive 
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interaction involved repeatedly following procedural steps outlined in the worked-example, 

indicating no additional learning value from the collaborative process.In contrast, 

clarification seeking was observed when students attempted to address misunderstandings 

related to specific elements in the worked-example, such as determining the integration 

bounds. This behavior suggests that, while peer collaboration can promote clarification, it 

may not consistently lead to deeper conceptual understanding if limited to surface-level 

questioning. These findings underscore the need for collaborative tasks that encourage more 

meaningful and reflective engagement to optimize learning outcomes. 

The next category, cognitive load, revealed two contrasting conditions: underload 

and extraneous overload. In many groups, underload occurred when students perceived the 

problem as straightforward and solvable through linear steps, leading to disengagement and 

passive agreement. This lack of challenge reduced opportunities for meaningful 

collaboration, as students felt that discussion was unnecessary. Conversely, extraneous 

overload emerged when students overcomplicated the task by proposing irrelevant 

modifications to the worked-example. This excessive cognitive load hindered learning by 

diverting students' attention from the primary objectives. These findings support cognitive 

load theory, which posits that collaboration can become counterproductive when extraneous 

cognitive demands exceed students' working memory capacity (Sweller et al., 1998). 

The final category, collaboration effectiveness, was predominantly characterized by 

ineffectiveness. Collaborative learning was ineffective when students merely followed the 

procedural steps outlined in the worked-example without gaining any new insights. In 

contrast, partial effectiveness was observed when students engaged in clarification seeking 

and partial elaboration of key concepts. However, these efforts were often insufficient to 

produce significant learning gains (van Merriënboer & Kirschner, 2017). 

These findings underscore the importance of designing collaborative learning 

activities that strike a balance between cognitive load and deeper, more meaningful 

engagement. While worked-examples are effective in reducing cognitive load in individual 

learning, their structured format may not fully support collaborative learning. This limitation 

arises because highly guided tasks often leave little room for active exploration or co-

construction of knowledge within a group setting. However, the effectiveness of 

collaborative learning could be enhanced through the integration of complementary tasks 

that promote problem-solving and active reasoning. Such tasks can provide opportunities for 

students to engage in dialogue, share perspectives, and collaboratively apply concepts to 

more complex scenarios. Additionally, modifying the structure of worked-examples (by 

incorporating prompts that require reflection, inquiry, or multi-step problem-solving), may 

further improve the effectiveness of peer collaboration by fostering cognitive engagement 

and encouraging deeper processing of the material. 

 

4. CONCLUSION 

Although worked-examples proved effective in teaching multivariable calculus 

concepts in terms of both knowledge acquisition and cognitive load, peer collaboration often 

faced limitations due to underload, redundant interaction, and ineffective collaboration 

modalities. However, opportunities for effortful understanding and clarification seeking 
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indicate that collaboration can still play a supportive role if instructional design encourages 

deeper engagement and problem-solving. Future research is needed to explore strategies for 

optimizing peer collaboration in guided learning contexts through manipulations of worked-

examples, cognitive load, and task complexity. 
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