Main Article Content

Abstract

Mathematical education in higher education plays a significant role in training future citizens with problem-solving skills to meet professional requirements. One of the trends in teaching mathematics at universities that has received much focus is teaching mathematics through modelling. The article uses the bibliometric analysis method through Bibliometrix and VOSviewer software to analyze 271 publications extracted from the Scopus database to provide an overall picture of mathematics modelling research in higher education from 1980 to 2023. The results indicate that the growth trend of publications is unstable, with a significant increase in the last 5 years. The United States and China are the two leading countries in terms of the number of published publications and citations; Tecnológico de Monterrey (Mexico) is the affiliation with the highest number of publications; the Book series “International Perspectives on the Teaching and Learning of Mathematical Modelling” is the most release source on this topic. The article also analyzes co-occurring keywords and identifies 03 research trends on this topic, including using technology and computer programming in mathematics modelling curriculum for students of technical universities, teaching mathematic modelling in universities, as well as using technology in teaching modelling and STEM education, innovating teaching methods of mathematics modelling and applying information technology in teaching mathematics modelling in pedagogic training programs. This is the first bibliometric study on mathematics modelling. These important research results help scholars interested in this research direction have an overview through useful quantitative information regarding mathematical modelling research in higher education worldwide, thereby developing appropriate research trends.

Keywords

Bibliometric analysis Higher education Mathematical modelling Scopus database

Article Details

References

  1. Abassian, A., Safi, F., Bush, S., & Bostic, J. (2020). Five different perspectives on mathematical modeling in mathematics education. Investigations in Mathematics Learning, 12(1), 53-65. https://doi.org/10.1080/19477503.2019.1595360

  2. Adam, J. A. (2011). Mathematics in nature : Modeling patterns in the natural world. Princeton University Press. http://digital.casalini.it/9781400841011

  3. Asempapa, R. S., & Sastry, A. M. (2021). Examining preservice teachers' familiarity and experiences with mathematical modeling practices. Investigations in Mathematics Learning, 13(3), 214-229. https://doi.org/10.1080/19477503.2021.1936987

  4. Barrera, M. E. A., Pulido, H. G., & Alejo, V. V. (2023). Model-eliciting activity with civil engineering students to solve a problem involving binomial distribution. Statistics Education Research Journal, 22(3), 3. https://doi.org/10.52041/serj.v22i3.431

  5. Beichner, R. J., Saul, J. M., Allain, R. J., Deardorff, D. L., & Abbott, D. S. (2000). Introduction to SCALE-UP: Student-centered activities for large enrollment university physics. In ASEE Annual Conference Proceedings, (pp. 3833–3844).

  6. Berry, J., & O'Shea, T. (1982). Assessing mathematical modelling. International Journal of Mathematical Education in Science and Technology, 13(6), 715-724. https://doi.org/10.1080/0020739820130605

  7. Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (pp. 222-231). Woodhead Publishing. https://doi.org/10.1533/9780857099419.5.221

  8. Cardella, M. E. (2013). Mathematical modeling in engineering design projects. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies: ICTMA 13 (pp. 87-98). Springer Netherlands. https://doi.org/10.1007/978-94-007-6271-8_7

  9. Carrejo, D. J., & Marshall, J. (2007). What is mathematical modelling? Exploring prospective teachers’ use of experiments to connect mathematics to the study of motion. Mathematics Education Research Journal, 19(1), 45-76. https://doi.org/10.1007/BF03217449

  10. Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. (2015). Do students attend to representational illustrations of non-standard mathematical word problems, and, if so, how helpful are they? Instructional Science, 43(1), 147-171. https://doi.org/10.1007/s11251-014-9332-7

  11. Durandt, R. (2021). Design principles to consider when student teachers are expected to learn mathematical modelling. Pythagoras, 42(1), 618. https://doi.org/10.4102/pythagoras.v42i1.618

  12. Elena, S., Sergey, S., Artyom, S., & Mikhail, S. (2022, 20-22 July 2022). Cybersecurity elements in remote payment systems: research models. In 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), (pp. 1-5). https://doi.org/10.1109/ICECET55527.2022.9873027

  13. Eyrikh, N. V., Markova, N. V., Zhunusakunova, A. D., Bazhenov, R. I., Matveeva, E. V., & Gorbunova, T. N. (2021, 6-10 Sept. 2021). Using computer algebra system Maple for teaching the basics of the finite element method. In 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS), (pp. 616-620). https://doi.org/10.1109/ITQMIS53292.2021.9642878

  14. Farràs, B. B. I., Casabò, M. B. I., & Pérez, J. G. (2011). Study and research courses and mathematical modelling in the natural sciences university teaching. Ensenanza De Las Ciencias, 29(3), 339-352. https://doi.org/10.5565/rev/ec/v29n3.519

  15. Fontana, A., & Groenwald, C. L. O. (2023). Meaningful learning and mathematical modelling-contributions to dealing with business problem situations in higher education. Acta Scientiae, 25(4), 62-94. https://doi.org/10.17648/acta.scientiae.7667

  16. Galligan, L., Axelsen, T., Pennicott, T., Addie, R., Galbraith, P., & Woolcott, G. (2019). It’s part of my life and the modelling process. Journal of Mathematics Teacher Education, 22(4), 355-378. https://doi.org/10.1007/s10857-019-09426-3

  17. González-Peña, O. I., Morán-Soto, G., Rodríguez-Masegosa, R., & Rodríguez-Lara, B. M. (2021). Effects of a thermal inversion experiment on STEM students learning and application of damped harmonic motion. Sustainability, 13(2), 919. https://doi.org/10.3390/su13020919

  18. Haines, C., & Crouch, R. (2001). Recognizing constructs within mathematical modelling. Teaching Mathematics and its Applications: An International Journal of the IMA, 20(3), 129-138. https://doi.org/10.1093/teamat/20.3.129

  19. Haines, C., Galbraith, P., Blum, W., & Khan, S. (2007). Mathematical modelling: Education, engineering and economics-ICTMA 12. Elsevier. https://doi.org/10.1533/9780857099419

  20. Haj-Yahya, A., & Klieger, A. (2023). Collaborating with industry to highlight the relevance of mathematics. Research in Mathematics Education, 1-21. https://doi.org/10.1080/14794802.2023.2263843

  21. Hernandez-Martinez, P., Thomas, S., Viirman, O., & Rogovchenko, Y. (2021). ‘I’m still making dots for them’: mathematics lecturers’ views on their mathematical modelling practices. International Journal of Mathematical Education in Science and Technology, 52(2), 165-177. https://doi.org/10.1080/0020739X.2019.1668977

  22. Hitt, F., & Dufour, S. (2021). Introduction to calculus through an open-ended task in the context of speed: representations and actions by students in action. ZDM – Mathematics Education, 53(3), 635-647. https://doi.org/10.1007/s11858-021-01258-x

  23. Houston, K. (2003). ICTMA: The First 20 Years. In S. J. Lamon, W. A. Parker, & K. Houston (Eds.), Mathematical Modelling (pp. 255-267). Woodhead Publishing. https://doi.org/10.1533/9780857099549.5.255

  24. Huang, C. H. (2012). Promoting engineering students’ mathematical modeling competency. In SEFI 40th annual conference.

  25. Jacobs, G. J., & Durandt, R. (2016). Attitudes of pre-service mathematics teachers towards modelling: A South African inquiry. Eurasia Journal of Mathematics, Science and Technology Education, 13(1), 61-84. https://doi.org/10.12973/eurasia.2017.00604a

  26. Juarez Ramirez, J. A., Chamoso Sanchez, J. M., & Gonzalez Astudillo, M. T. (2020). Interaction in virtual forums by integrating mathematical modelling to train engineers. Ensenanza De Las Ciencias, 38(3), 161-177. https://doi.org/10.5565/rev/ensciencias.3041

  27. Kaiser, G., & Schwarz, B. (2006). Mathematical modelling as bridge between school and university. Zdm, 38(2), 196-208. https://doi.org/10.1007/BF02655889

  28. Kim, D.-J., Choi, S.-H., Lee, Y., & Lim, W. (2021). Secondary teacher candidates’ mathematical modeling task design and revision. Mathematics, 9(22), 2933. https://doi.org/10.3390/math9222933

  29. Lamon, S. J., Parker, W. A., & Houston, S. K. (2003). Mathematical modelling: A way of life-ICTMA 11. Elsevier. https://doi.org/10.1533/9780857099549

  30. Ledder, G. (2022). Mentoring undergraduate research in mathematical modeling. Bulletin of Mathematical Biology, 84(8), 77. https://doi.org/10.1007/s11538-022-01040-4

  31. Li, H. (2023). Mathematical modeling and optimal design based on information technology algorithms. In J. C. Hung, J.-W. Chang, & Y. Pei (Eds.), Lecture notes in electrical engineering (pp. 721-728). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-2092-1_90

  32. Lingefjärd, T., & Holmquist, M. (2005). To assess students' attitudes, skills and competencies in mathematical modeling. Teaching Mathematics and its Applications: An International Journal of the IMA, 24(2-3), 123-133. https://doi.org/10.1093/teamat/hri021

  33. Lopes, A. P. C., & da Silva Reis, F. (2022). Contributions of mathematical modelling for learning differential equations in the remote teaching context. Acta Scientiae, 24(3), 184-215. https://doi.org/10.17648/acta.scientiae.7011

  34. Megowan-Romanowicz, C., O’Brien, D. J., Vieyra, R. E., & Johnson-Glenberg, M. (2023). Evaluating learning of motion graphs with a LiDAR-based smartphone application. In Proceedings of the Physics Education Research Conference 2023, (pp. 224-229). https://doi.org/10.1119/perc.2023.pr.Megowan-Romanowicz

  35. Méndez-Romero, R. A., Bueno-Carreño, D. H., Díez-Fonnegra, C., & Redondo, J. M. (2021). SIAM—Colombia MMC: A challenge-based math modeling learning strategy. Mathematics, 9(13), 1565. https://doi.org/10.3390/math9131565

  36. Merck, M. F., Gallagher, M. A., Habib, E., & Tarboton, D. (2021). Engineering students’ perceptions of mathematical modeling in a learning module centered on a hydrologic design case study. International Journal of Research in Undergraduate Mathematics Education, 7(2), 351-377. https://doi.org/10.1007/s40753-020-00131-8

  37. Mesterton-Gibbons, M. (2011). A concrete approach to mathematical modelling. John Wiley & Sons. https://doi.org/10.1002/9781118032480

  38. Molina-Toro, J. F., Rendón-Mesa, P. A., & Villa-Ochoa, J. A. (2022). Contradictions in mathematical modeling with digital technologies. Education and Information Technologies, 27(2), 1655-1673. https://doi.org/10.1007/s10639-021-10676-z

  39. Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213-228. https://doi.org/10.1007/s11192-015-1765-5

  40. Morales, F. A. P., Serfaty, R., Vedovotto, J. M., Cavallini, A., Villar, M. M., & da Silveira Neto, A. (2023). Fluid–structure interaction with a finite element–immersed boundary approach for compressible flows. Ocean Engineering, 290, 115755. https://doi.org/10.1016/j.oceaneng.2023.115755

  41. Oke, K. H. (1980). Teaching and assessment of mathematical modelling in an M.Sc. course in mathematical education. International Journal of Mathematical Education in Science and Technology, 11(3), 361-369. https://doi.org/10.1080/0020739800110307

  42. Palharini, B., & de Almeida, L. M. W. (2015). Mathematical modelling tasks and the mathematical thinking of students. In G. A. Stillman, W. Blum, & M. Salett Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 219-228). Springer International Publishing. https://doi.org/10.1007/978-3-319-18272-8_17

  43. Poladian, L., & Zheng, C. (2016). Context, connections and communication: using journal articles in undergraduate mathematics. International Journal of Innovation in Science and Mathematics Education, 24(5), 14-23.

  44. Pospiech, G., & Fischer, H. E. (2021). Physical–mathematical modelling and Its role in learning physics. In H. E. Fischer & R. Girwidz (Eds.), Physics Education (pp. 201-229). Springer International Publishing. https://doi.org/10.1007/978-3-030-87391-2_8

  45. Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation, 25, 348.

  46. Ramirez-Montes, G., Carreira, S., & Henriques, A. (2023). Learning of linear transformations involving mathematical modelling supported by technology: A study with undergraduate students. In G. Greefrath, S. Carreira, & G. A. Stillman (Eds.), Advancing and Consolidating Mathematical Modelling: Research from ICME-14 (pp. 143-160). Springer International Publishing. https://doi.org/10.1007/978-3-031-27115-1_9

  47. Ramírez-Sánchez, C. A., Romo-Vázquez, A., Romo-Vázquez, R., & Velásquez-Rojas, D. (2023). Study of modeling questions in a first-year university mathematics online course. Educational Studies in Mathematics, 114(3), 503-524. https://doi.org/10.1007/s10649-023-10261-w

  48. Rogovchenko, Y., & Rogovchenko, S. (2022). Promoting engineering students’ learning with mathematical modelling projects. In Towards a new future in engineering education, new scenarios that european alliances of tech universities open up, (pp. 643-652). https://doi.org/10.5821/conference-9788412322262.1451

  49. Rosa, M., Orey, D. C., Cordero, F., & Carranza, P. (2022). The mathematical teaching and learning process through mathematical modelling: Educational change in Latin America. In M. Rosa, F. Cordero, D. C. Orey, & P. Carranza (Eds.), Mathematical modelling programs in Latin America: A collaborative context for social construction of knowledge for educational change (pp. 393-407). Springer International Publishing. https://doi.org/10.1007/978-3-031-04271-3_18

  50. Taylor, M. J., Pountney, D. C., & Baskett, M. (2008). Using animation to support the teaching of computer game development techniques. Computers & Education, 50(4), 1258-1268. https://doi.org/10.1016/j.compedu.2006.12.006

  51. Teodoro, V. D., & Neves, R. G. (2011). Mathematical modelling in science and mathematics education. Computer Physics Communications, 182(1), 8-10. https://doi.org/10.1016/j.cpc.2010.05.021

  52. Tugashova, L., Bazhenov, R., Vikhtenko, E., Borodin, I., & Alekseeva, L. (2022). Design of an e-learning course on control systems modeling for students in applied physics. Journal of Physics: Conference Series, 2373(2), 022015. https://doi.org/10.1088/1742-6596/2373/2/022015

  53. Van Damme, D., & Zahner, D. (2022). Does higher education teach students to think critically? OECD. https://doi.org/10.1787/cc9fa6aa-en

  54. Villa-Ochoa, J. A., Sánchez-Cardona, J., & Rendón-Mesa, P. A. (2021). Formative assessment of pre-service teachers’ knowledge on mathematical modeling. Mathematics, 9(8), 851. https://doi.org/10.3390/math9080851

  55. Wedelin, D., Adawi, T., Jahan, T., & Andersson, S. (2013, 31 Oct.-1 Nov. 2013). Teaching and learning mathematical modelling and problem solving: A case study. In 2013 1st International Conference of the Portuguese Society for Engineering Education (CISPEE), (pp. 1-6). https://doi.org/10.1109/CISPEE.2013.6701981

  56. Wess, R., Klock, H., Siller, H.-S., & Greefrath, G. (2021). Discussion. In Measuring professional competence for the teaching of mathematical modelling: A test instrument (pp. 87-89). Springer International Publishing. https://doi.org/10.1007/978-3-030-78071-5_5

  57. Wiechert, W. (2002). Teaching mathematical modeling: Art or science? In P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, & J. J. Dongarra (Eds.), Lecture notes in computer science (Vol. 2331, pp. 858-862). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-47789-6_89

  58. Wong, J., Papageorgiou, E., Klaassen, R., Van der Wal, N., Menschaart, L., & Cabo, A. (2022). Research on mathematical competencies in engineering education: where are we now? In Towards a new future in engineering education, new scenarios that european alliances of tech universities open up, (pp. 1815-1828). https://doi.org/10.5821/conference-9788412322262.1310

  59. Xu, K. (2021). Research on college mathematics teaching method based on modeling thought. Journal of Physics: Conference Series, 1915(2), 022042. https://doi.org/10.1088/1742-6596/1915/2/022042

  60. Ye, Q.-X., Blum, W., Houston, S., & Jiang, Q.-Y. (2003). Mathematical modelling in education and culture: ICTMA 10. Elsevier. https://doi.org/10.1533/9780857099556

  61. Zawojewski, J. S., Diefes-Dux, H. A., & Bowman, K. J. (2008). Models and modeling in engineering education: Designing experiences for all students. Brill. https://doi.org/10.1163/9789087904043

  62. Zhou, J., Wei, Y., Li, X., Zhang, Y., & Zhan, D. (2023, 29-30 April 2023). Discussion on the focus of the post-graduate mathematical contest in modeling. In 2023 International Seminar on Computer Science and Engineering Technology (SCSET), (pp. 135-141). https://doi.org/10.1109/SCSET58950.2023.00039

  63. Zuo, L. (2021). Computer-based mathematical modeling method and application. Journal of Physics: Conference Series, 1744(3), 032145. https://doi.org/10.1088/1742-6596/1744/3/032145