Main Article Content

Abstract

Computer-Based Mathematics Learning (CBML) has gone global in the last decade and is making a substantial impact for educational purposes. But the fact is that in the scientific literature, it is found that studies aimed at testing these theoretical assumptions have inconsistent results. In this regard, this meta-analysis was conducted to determine the effect of CBML and to analyze categorical variables to consider the implications. Data were retrieved from the Scopus database using Publish or Perish between 2010 and 2023. This study examined 29 independent samples from 28 eligible primary studies with 1179 subjects. The population estimate was based on a random effects model, and the CMA software was used as a calculation aid. The study's results provide an overall effect size of 1.03 (large effect). This indicates that applying CBML significantly affects students' mathematical abilities. The four categorical variables considered in the study are discussed to clarify research trends. Furthermore, the research implications are outlined and contribute to future CBML implementation arrangements.

Keywords

Computer-Based Mathematics Learning Mathematical Abilities Meta-Analysis Scopus Database

Article Details

References

  1. Apriatna, E. J., Budiyono, & Indriati, D. (2020). The effectiveness of problem based learning assisted by cabri 3D on student’s mathematical communication writing and drawing skills. Journal of Physics: Conference Series, 1581(1), 012060. https://doi.org/10.1088/1742-6596/1581/1/012060

  2. Arik, S., & Yilmaz, M. (2020). The effect of constructivist learning approach and active learning on environmental education: a meta-analysis study. International Electronic Journal of Environmental Education, 10(2), 44-84.

  3. Aungamuthu, Y. (2013). Towards a responsive pedagogy: Using ICT as a tool to engage access students’ academic identities in mathematics. Alternation, 8, 66-85.

  4. Çoğaltay, N., & Karadağ, E. (2015). Introduction to Meta-Analysis. In E. Karadağ (Ed.), Leadership and Organizational Outcomes: Meta-Analysis of Empirical Studies (pp. 19-28). Springer International Publishing. https://doi.org/10.1007/978-3-319-14908-0_2

  5. Cohen, L., Manion, L., & Morrison, K. (2017). Research methods in education. Routledge.

  6. Cooper, H. (2017). Research synthesis and meta-analysis: A step-by-step approach (Fifth Edition ed.). https://doi.org/10.4135/9781071878644

  7. Das, A. K., Das, S., & Mukherjee, J. (2021). Largest triangle inside a terrain. Theoretical Computer Science, 858, 90-99. https://doi.org/10.1016/j.tcs.2020.12.018

  8. de Mendivil, Í. S. M., Crespo, R. G., González-Castaño, A., Ruiz, A. A. M., & Palma, L. O. (2019). Herramienta pedagógica basada en el desarrollo de una aplicación informática para la mejora del aprendizaje en matemática avanzada [A pedagogical tool based on the development of a computer application to improve learning in advanced mathematics]. Revista Española de Pedagogía, 77(274), 457-485. https://doi.org/10.22550/REP77-3-2019-06

  9. del Cerro Velázquez, F., & Morales Méndez, G. (2021). Application in augmented reality for learning mathematical functions: A study for the development of spatial intelligence in secondary education students. Mathematics, 9(4), 369. https://doi.org/10.3390/math9040369

  10. Demir, S., & Basol, G. (2014). Effectiveness of computer-assisted mathematics education (CAME) over academic achievement: A meta-analysis study. Educational Sciences: Theory and Practice, 14(5), 2026-2035.

  11. Dockendorff, M., & Solar, H. (2018). ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra. International Journal of Mathematical Education in Science and Technology, 49(1), 66-84. https://doi.org/10.1080/0020739X.2017.1341060

  12. Fadhli, M., Brick, B., Setyosari, P., Ulfa, S., & Kuswandi, D. (2020). A meta-analysis of selected studies on the effectiveness of gamification method for children. International Journal of Instruction, 13(1), 845-854. https://doi.org/10.29333/iji.2020.13154a

  13. Foster, M. E., Anthony, J. L., Clements, D. H., Sarama, J., & Williams, J. M. (2016). Improving mathematics learning of kindergarten students through computer-assisted instruction. Journal for Research in Mathematics Education JRME, 47(3), 206-232. https://doi.org/10.5951/jresematheduc.47.3.0206

  14. Granberg, C., & Olsson, J. (2015). ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software. The Journal of Mathematical Behavior, 37, 48-62. https://doi.org/10.1016/j.jmathb.2014.11.001

  15. Hallinger, P., & Chatpinyakoop, C. (2019). A bibliometric review of research on higher education for sustainable development, 1998–2018. Sustainability, 11(8), 2401. https://doi.org/10.3390/su11082401

  16. Hallinger, P., & Nguyen, V.-T. (2020). Mapping the landscape and structure of research on education for sustainable development: A bibliometric review. Sustainability, 12(5), 1947. https://doi.org/10.3390/su12051947

  17. Hamid, H., Angkotasan, N., Jalal, A., Muhtadi, D., & Sukirwan. (2020). Students’ mathematical proficiency in solving calculus problems after Maple implementation. Journal of Physics: Conference Series, 1613(1), 012025. https://doi.org/10.1088/1742-6596/1613/1/012025

  18. Hartatiana, H., Darhim, D., & Nurlaelah, E. (2017). Student’s spatial reasoning through model eliciting activities with Cabri 3D. Journal of Physics: Conference Series, 895(1), 012075. https://doi.org/10.1088/1742-6596/895/1/012075

  19. Higgins, S., & Katsipataki, M. (2015). Evidence from meta-analysis about parental involvement in education which supports their children’s learning. Journal of Children's Services, 10(3), 280-290. https://doi.org/10.1108/JCS-02-2015-0009

  20. Ishartono, N., Nurcahyo, A., Waluyo, M., Prayitno, H. J., & Hanifah, M. (2022). Integrating GeoGebra into the flipped learning approach to improve students' self-regulated learning during the COVID-19 pandemic. Journal on Mathematics Education, 13(1), 69-86. https://doi.org/10.22342/jme.v13i1.pp69-86

  21. Jacinto, H., & Carreira, S. (2017). Mathematical problem solving with technology: The techno-mathematical fluency of a student-with-GeoGebra. International Journal of Science and Mathematics Education, 15(6), 1115-1136. https://doi.org/10.1007/s10763-016-9728-8

  22. Jelatu, S., Sariyasa, S., & Ardana, I. M. (2018). Effect of GeoGebra-Aided REACT Strategy on Understanding of Geometry Concepts. International Journal of Instruction, 11(4), 325-336. https://doi.org/10.12973/iji.2018.11421a

  23. Juandi, D., Kusumah, Y. S., & Tamur, M. (2022). A meta-analysis of the last two decades of realistic mathematics education approaches. International Journal of Instruction, 15(1), 381-400. https://doi.org/10.29333/iji.2022.15122a

  24. Juandi, D., Kusumah, Y. S., Tamur, M., Perbowo, K. S., Siagian, M. D., Sulastri, R., & Negara, H. R. P. (2021). The effectiveness of dynamic geometry software applications in learning mathematics: A meta-analysis study. International Journal of Interactive Mobile Technologies (iJIM), 15(02), 18-37. https://doi.org/10.3991/ijim.v15i02.18853

  25. Juandi, D., Kusumah, Y. S., Tamur, M., Perbowo, K. S., & Wijaya, T. T. (2021). A meta-analysis of Geogebra software decade of assisted mathematics learning: what to learn and where to go? Heliyon, 7(5), e06953. https://doi.org/10.1016/j.heliyon.2021.e06953

  26. Kariadinata, R., Yaniawati, R. P., Juariah, J., Sugilar, H., & Muthmainah, A. (2019). Spatial thinking ability and mathematical character students through Cabri 3D with a scientific approach. Journal of Physics: Conference Series, 1402(7), 077094. https://doi.org/10.1088/1742-6596/1402/7/077094

  27. Kartal, B., & Çınar, C. (2022). Preservice mathematics teachers’ TPACK development when they are teaching polygons with geogebra. International Journal of Mathematical Education in Science and Technology, 1-33. https://doi.org/10.1080/0020739X.2022.2052197

  28. Khalil, M., Farooq, R., Çakıroğlu, E., Khalil, U., & Khan, D. (2018). The development of mathematical achievement in analytic geometry of grade-12 students through GeoGebra activities. Eurasia Journal of Mathematics Science and Technology Education, 14(4), 1453-1463. https://doi.org/10.29333/ejmste/83681

  29. Kim, S. J., Kastberg, S. E., Xin, Y. P., Lei, Q., Liu, B., Wei, S., & Chen, Y. (2022). Counting strategies of students struggling in mathematics in a computer-based learning environment. The Journal of Mathematical Behavior, 68, 101007. https://doi.org/10.1016/j.jmathb.2022.101007

  30. McLaren, B. M., Adams, D. M., Mayer, R. E., & Forlizzi, J. (2017). A computer-based game that promotes mathematics learning more than a conventional approach. International Journal of Game-Based Learning (IJGBL), 7(1), 36-56. https://doi.org/10.4018/IJGBL.2017010103

  31. Mendrek, M., Grzesik, N., Krzyżak, A., & Kuźma, K. (2018). Different defuzzification methods in Guimbal Cabri G2 helicopter takeoff possibility evaluation. Transport Problems, 13(2), 27-38.

  32. Muntazhimah, M., & Miatun, A. (2018). Cabri 3D - assisted collaborative learning to enhance junior high school students’ spatial ability. Journal of Physics: Conference Series, 948(1), 012042. https://doi.org/10.1088/1742-6596/948/1/012042

  33. Ningsih, Y. L., & Paradesa, R. (2018). Improving students’ understanding of mathematical concept using maple. Journal of Physics: Conference Series, 948(1), 012034. https://doi.org/10.1088/1742-6596/948/1/012034

  34. Nurjanah, N., Latif, B., Yuliardi, R., & Tamur, M. (2020). Computer-assisted learning using the Cabri 3D for improving spatial ability and self- regulated learning. Heliyon, 6(11), e05536. https://doi.org/10.1016/j.heliyon.2020.e05536

  35. Ochkov, V. F., & Bogomolova, E. P. (2015). Teaching mathematics with mathematical software. Journal of Humanistic Mathematics, 5(1), 265-285. https://doi.org/10.5642/jhummath.201501.15

  36. Park, S., & Hong, S. (2016). The empirical review of meta-analysis published in Korea. Asia Pacific Education Review, 17(2), 313-324. https://doi.org/10.1007/s12564-016-9433-x

  37. Pereira, J., Tang, J., Wijaya, T. T., Chen, J., Hermita, N., & Tamur, M. (2021). Modeling the interior angles of a triangle using Hawgent Dynamic Mathematics Software. In 2021 Universitas Riau International Conference on Education Technology (URICET).

  38. Phan, T. T., Do, T. T., Trinh, T. H., Tran, T., Duong, H. T., Trinh, T. P. T., Do, B. C., & Nguyen, T.-T. (2022). A bibliometric review on realistic mathematics education in scopus database between 1972-2019. European Journal of Educational Research, 11(2), 1133-1149. https://doi.org/10.12973/eu-jer.11.2.1133

  39. Pigott, T. D., & Polanin, J. R. (2020). Methodological guidance paper: High-quality meta-analysis in a systematic review. Review of Educational Research, 90(1), 24-46. https://doi.org/10.3102/0034654319877153

  40. Santos-Trigo, M., & Reyes-Rodriguez, A. (2016). The use of digital technology in finding multiple paths to solve and extend an equilateral triangle task. International Journal of Mathematical Education in Science and Technology, 47(1), 58-81. https://doi.org/10.1080/0020739X.2015.1049228

  41. Schmidt, F. L., & Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and bias in research findings (Third Edition ed.). London: SAGE Publications, Ltd. https://doi.org/10.4135/9781483398105

  42. Shyshkina, M., Kohut, U., & Popel, M. (2018). The systems of computer mathematics in the cloud-based learning environment of educational institutions. In CEUR Workshop Proceedings. https://doi.org/10.48550/arXiv.1807.01770

  43. Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annual Review of Psychology, 70(1), 747-770. https://doi.org/10.1146/annurev-psych-010418-102803

  44. Sugandi, B., & Delice, A. (2014). Comparison of Turkish and Indonesian secondary mathematics curricula; Reflection of the Paradigms. Procedia - Social and Behavioral Sciences, 152, 540-545. https://doi.org/10.1016/j.sbspro.2014.09.240

  45. Syed, M., & Nelson, S. C. (2015). Guidelines for establishing reliability when coding narrative data. Emerging Adulthood, 3(6), 375-387. https://doi.org/10.1177/21676968155876

  46. Takači, D., Stankov, G., & Milanovic, I. (2015). Efficiency of learning environment using GeoGebra when calculus contents are learned in collaborative groups. Computers & Education, 82, 421-431. https://doi.org/10.1016/j.compedu.2014.12.002

  47. Tamur, M., Juandi, D., & Kusumah, Y. S. (2020). The effectiveness of the application of mathematical software in Indonesia; A meta-analysis study. International Journal of Instruction, 13(4), 867-884. https://doi.org/10.29333/iji.2020.13453a

  48. Tamur, M., Kusumah, Y. S., Juandi, D., Kurnila, V. S., Jehadus, E., & Samura, A. O. (2021). A meta-analysis of the past decade of mathematics learning based on the computer algebra system (CAS). Journal of Physics: Conference Series, 1882(1), 012060. https://doi.org/10.1088/1742-6596/1882/1/012060

  49. Tamur, M., Kusumah, Y. S., Juandi, D., Wijaya, T. T., Nurjaman, A., & Samura, A. O. (2021). Hawthorne effect and mathematical software based learning: a meta-analysis study. Journal of Physics: Conference Series, 1806(1), 012072. https://doi.org/10.1088/1742-6596/1806/1/012072

  50. Tamur, M., Weinhandl, R., Sennen, E., Ndiung, S., & Nurjaman, A. (2022). The effect of Cabri Express in geometry learning on students' mathematical communication ability. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(4), 1027-1033. https://doi.org/10.31764/jtam.v6i4.10865

  51. Tatar, E., KaÄŸizmanli, T. B., & Akkaya, A. (2014). The effect of a Dynamic Software on the success of analytical analysis of the circle and prospective mathematics teachers opinions. Necatibey Faculty of Education Electronic Journal of Science & Mathematics Education, 8(1), 153-177.

  52. Timmers, C. F., Braber-van den Broek, J., & van den Berg, S. M. (2013). Motivational beliefs, student effort, and feedback behaviour in computer-based formative assessment. Computers & Education, 60(1), 25-31. https://doi.org/10.1016/j.compedu.2012.07.007

  53. Wang, A. I., & Tahir, R. (2020). The effect of using Kahoot! for learning – A literature review. Computers & Education, 149, 103818. https://doi.org/10.1016/j.compedu.2020.103818

  54. Wicherts, J. (2020). Meta-analysis. In V. Zeigler-Hill & T. K. Shackelford (Eds.), Encyclopedia of Personality and Individual Differences (pp. 2859-2860). Springer International Publishing. https://doi.org/10.1007/978-3-319-24612-3_1326

  55. Xin, Y. P., Park, J. Y., Tzur, R., & Si, L. (2020). The impact of a conceptual model-based mathematics computer tutor on multiplicative reasoning and problem-solving of students with learning disabilities. The Journal of Mathematical Behavior, 58, 100762. https://doi.org/10.1016/j.jmathb.2020.100762

  56. Zaldívar-Colado, A., Alvarado-Vázquez, R. I., & Rubio-Patrón, D. E. (2017). Evaluation of using mathematics educational software for the learning of first-year primary school students. Education Sciences, 7(4), 79. https://doi.org/10.3390/educsci7040079

  57. Zhang, Y., & Wang, Q. (2020). Content learning opportunities, computer-based instruction, and students’ mathematics and science achievement. International Journal of Mathematical Education in Science and Technology, 51(8), 1164-1180. https://doi.org/10.1080/0020739X.2020.1717659

  58. Zulnaidi, H., Oktavika, E., & Hidayat, R. (2020). Effect of use of GeoGebra on achievement of high school mathematics students. Education and Information Technologies, 25(1), 51-72. https://doi.org/10.1007/s10639-019-09899-y

  59. Zulnaidi, H., & Zamri, S. N. A. S. (2017). The effectiveness of the GeoGebra software: The intermediary role of procedural knowledge on students’ conceptual knowledge and their achievement in mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 2155-2180. https://doi.org/10.12973/eurasia.2017.01219a