Main Article Content


This study aims to determine the characteristics of students' metacognition in solving mathematical literacy problems. The metacognitive traits explored are related to awareness in planning, monitoring, and evaluating the design of the thinking process used. The research method used is a mixed-method (sequential explanatory), which uses quantitative research results to conduct qualitative research. The research subjects were 80 early semester students who took the literacy test and chose six respondents representing the upper, middle, and lower groups, with two people in each group to be interviewed. The results showed that the mathematical literacy skills of pre-service teachers were at a low level. Metacognitive characteristics that appear in the low group are (1) realizing that the solution of strategy is not right but not improved; (2) planning to develop a settlement strategy, but are not sure, (3) do not carry out the re-check process, and (4) do not believe what is being thought and do not understand the concept. Metacognitive traits in the middle group are (1) aware of what they are thinking, (2) consciously plan various strategies to improve thinking accuracy, but do not always use these strategies, (3) tend to monitor the thinking process, and (4) show tendency to master the basic mathematical concepts of the problems at hand. The characteristics of metacognition in the high group during problem-solving are (1) Using various strategies to demonstrate or improve the accuracy of thinking (sketching, drawing), (2) Analyzing the problem before solving it, and (3) Understanding and mastering the mathematical concepts that underlie the problem which is given.


Mathematical literacy Metacognition

Article Details


  1. Akben, N. (2020). Effects of the problem-posing approach on students’ problem solving skills and metacognitive awareness in science education. Research in Science Education, 50(3), 1143-1165. doi:10.1007/s11165-018-9726-7

  2. [Article]     [Google Scholar]

  3. Ali, R., Dossanova, S., Kulambayeva, K., Sadykova, A., & Tazhibayev, T. (2020). Functional Literacy in the Context of Human Capital Development. Universal Journal of Educational Research, 8(3), 1017-1026. doi:10.13189/ujer.2020.080336

  4. [Article]     [Google Scholar]


  6. Amin, I., & Mariani, S. (2017). PME learning model: The conceptual theoretical study of metacognition learning in mathematics problem solving based on constructivism. International Electronic Journal of Mathematics Education, 12(3), 333-352.

  7. [Article]     [Google Scholar]


  9. Angateeah, K. S. (2017). An investigation of students’ difficulties in solving non-routine word problem at lower secondary. International Journal of Learning and Teaching, 3(1), 46-50. doi:10.18178/ijlt.3.1.46-50

  10. [Article]     [Google Scholar]

  11. Bakar, M. A. A., & Ismail, N. (2020). Mathematical Instructional: A Conceptual of Redesign of Active Learning with Metacognitive Regulation Strategy. International Journal of Instruction, 13(3), 633-648. doi:10.29333/iji.2020.13343a

  12. [Article]     [Google Scholar]


  14. Basibas, A. T. (2020). Developing and Contextualizing Instructional Materials in Mathematics for Grade 6 Pupils. Asian Journal of Education and Social Studies, 13(4), 44-53. doi:10.9734/ajess/2020/v13i430341

  15. [Article]     [Google Scholar]

  16. Bybee, R. W. (2008). Scientific literacy, environmental issues, and PISA 2006: The 2008 Paul F-Brandwein lecture. Journal of Science Education and Technology, 17(6), 566-585. doi:10.1007/s10956-008-9124-4

  17. [Article]     [Google Scholar]

  18. Chao, J., Liu, C. H., & Yeh, Y. H. (2018). Analysis of the learning effectiveness of Atayal culture CPS spatial concept course on indigenous students. Eurasia Journal of Mathematics, Science and Technology Education, 14(6), 2059-2066. doi:10.29333/ejmste/86162

  19. [Article]     [Google Scholar]

  20. Charles, R. I., & Lester, F. K. (1984). An evaluation of a process-oriented instructional program in mathematical problem solving in grades 5 and 7. Journal for Research in Mathematics Education, 15(1), 15-34. doi:10.5951/jresematheduc.15.1.0015

  21. [Article]     [Google Scholar]

  22. de Lange, J. (2003). Mathematics for literacy. In B. L. Madison & L. A. Steen (Ed.). Quantitative literacy: Why numeracy matters for schools and colleges (pp. 75-89). Princeton, NJ: The National Council on Education and the Disciplines.

  23. [Article]     [Google Scholar]


  25. Desoete, A., & De Craene, B. (2019). Metacognition and mathematics education: An overview. ZDM, 51(4), 565-575. doi:10.1007/s11858-019-01060-w

  26. [Article]     [Google Scholar]

  27. Ekawati, R., Susanti, S., & Chen, J. C. (2020). Primary students’mathematical literacy: A case study. Infinity Journal, 9(1), 49-58. doi:10.22460/infinity.v9i1.p49-58

  28. [Article]     [Google Scholar]


  30. Fitriani, N., Suryadi, D., & Darhim, D. (2018). The students’ mathematical abstraction ability through realistic mathematics education with VBA-Microsoft Excel. Infinity Journal, 7(2), 123-132. doi:10.22460/infinity.v7i2.p123-132

  31. [Article]     [Google Scholar]

  32. Flavell, J. H. (2004). Theory-of-mind development: Retrospect and prospect. Merrill-Palmer Quarterly, 50(3), 274–290.

  33. [Article]     [Google Scholar]


  35. Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for research in mathematics education, 16(3), 163-176. doi:10.5951/jresematheduc.16.3.0163

  36. [Article]     [Google Scholar]

  37. Gough, J. (2004). Reflections on Skemp’s contributions to mathematical education. Mathematics Education Research Journal, 16(1), 72–77.

  38. [Article]     [Google Scholar]


  40. Heong, T. L. (2005). Problem solving abilities and strategies in solving multistep mathematical problems among form 2 students. Kertas Projek Sarjana. Kuala Lumpur: Universiti Malaya.

  41. [Google Scholar]


  43. Israel, S. E., Block, C. C., Bauserman, K. L., & Kinnucan-Welsch, K. (2006). Metacognition in literacy learning: Theory, assessment, instruction, and professional development. London: Lawrence Erlbaum Associates.

  44. [Google Scholar]


  46. Kadarisma, G., Fitriani, N., & Amelia, R. (2020). Relationship between misconception and mathematical abstraction of geometry at junior high school. Infinity Journal, 9(2), 213-222. doi:10.22460/infinity.v9i2.p213-222

  47. [Article]     [Google Scholar]

  48. Kariadinata, R. (2021). Students’ reflective abstraction ability on linear algebra problem solving and relationship with prerequisite knowledge. Infinity Journal, 10(1), 1-16. doi:10.22460/infinity.v10i1.p1-16

  49. [Article]     [Google Scholar]

  50. Kaune, C. (2006). Reflection and metacognition in mathematics education—tools for the improvement of teaching quality. ZDM, 38(4), 350-360. doi:10.1007/BF02652795

  51. [Article]     [Google Scholar]

  52. Khiat, H. (2010). A grounded theory approach: Conceptions of understanding in engineering mathematics learning. The Qualitative Report, 15(6), 1459-1488. doi:10.46743/2160-3715/2010.1356

  53. [Article]     [Google Scholar]


  55. Kramarski, B., & Zoldan, S. (2008). Using errors as springboards for enhancing mathematical reasoning with three metacognitive approaches. The Journal of Educational Research, 102(2), 137-151. doi:10.3200/JOER.102.2.137-151

  56. [Article]     [Google Scholar]


  58. Laamena, C. M., & Nusantara, T. (2019). Prospective mathematics teachers’ argumentation structure when constructing a mathematical proof: The importance of backing. Beta: Jurnal Tadris Matematika, 12(1), 43-59.

  59. [Article]     [Google Scholar]


  61. Laamena, C. M., Nusantara, T., Irawan, E. B., & Muksar, M. (2018). Analysis of the Students’ argumentation based on the level of ability: Study on the process of mathematical proof. Journal of Physics: Conference Series, 1028(1), 012156. doi:10.1088/1742-6596/1028/1/012156

  62. [Article]     [Google Scholar]

  63. Laurens, T. (2010). Penjenjangan metakognisi siswa yang valid dan reliabilitas. Jurnal Pendidikan dan Pembelajaran (JPP), 17(2), 201-211.

  64. [Article]     [Google Scholar]


  66. Lingel, K., Lenhart, J., & Schneider, W. (2019). Metacognition in mathematics: do different metacognitive monitoring measures make a difference?. ZDM, 51(4), 587-600. doi:10.1007/s11858-019-01062-8

  67. [Article]     [Google Scholar]

  68. Muhammad, N. B., Kumaidi, K., & Mukminan, M. (2020). Factors of critical spatial thinking for a geography metacognition assessment in Indonesian Senior High Schools. Review of International Geographical Education Online, 10(2), 186-204. doi:10.33403/rigeo.686050

  69. [Article]     [Google Scholar]

  70. Novriani, M. R., & Surya, E. (2017). Analysis of student difficulties in mathematics problem solving ability at MTs SWASTA IRA Medan. International Journal of Sciences: Basic and Applied Research (IJSBAR), 33(3), 63-75.

  71. [Article]     [Google Scholar]


  73. Özenç, E. G., & Dikici, H. (2016). The Correlation between the Fourth Grade Students' Level of Functional Literacy and Metacognitive Awareness. Journal of Education and Training Studies, 4(12), 108-117. doi:10.11114/jets.v4i12.1977

  74. [Article]     [Google Scholar]

  75. Prince, R. N., Frith, V., Steyn, S., & Cliff, A. (2021). Academic and quantitative literacy in higher education: Relationship with cognate school-leaving subjects. South African Journal of Higher Education, 35(3), 163-181. doi:10.20853/35-3-3943

  76. [Article]     [Google Scholar]

  77. Reyes, J., Insorio, A. O., Ingreso, M. L. V., Hilario, F. F., & Gutierrez, C. R. (2019). Conception and application of contextualization in mathematics education. International Journal of Educational Studies in Mathematics, 6(1), 1-18.

  78. [Article]     [Google Scholar]

  79. Root, J. R., Cox, S. K., Davis, K., & Hammons, N. (2020). Contextualizing mathematical problem-solving instruction for secondary students with extensive support needs: A systematic replication. Research and Practice for Persons with Severe Disabilities, 45(4), 241-255. doi:10.1177/1540796920949448

  80. [Article]     [Google Scholar]

  81. Salam, M., Misu, L., Rahim, U., Hindaryatiningsih, N., & Ghani, A. R. A. (2020). Strategies of Metacognition Based on Behavioural Learning to Improve Metacognition Awareness and Mathematics Ability of Students. International Journal of Instruction, 13(2), 61-72. doi:10.29333/iji.2020.1325a

  82. [Article]     [Google Scholar]

  83. Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM, 42(2), 149-161. doi:10.1007/s11858-010-0240-2

  84. [Article]     [Google Scholar]

  85. Schoenfeld, A. H. (1987). What’s all the fuss about metacognition?. In A. H. Schoenfeld (Ed.). Cognitive science and mathematics education (pp. 189–215). Hillsdale: Lawrence Erlbaum Associates.

  86. [Google Scholar]

  87. Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196(2), 1-38. doi:10.1177/002205741619600202

  88. [Article]     [Google Scholar]

  89. Sholihah, S. Z., & Afriansyah, E. A. (2017). Analisis kesulitan siswa dalam proses pemecahan masalah geometri berdasarkan tahapan berpikir Van Hiele. Mosharafa: Jurnal Pendidikan Matematika, 6(2), 287-298. doi:10.31980/mosharafa.v6i2.317

  90. [Article]     [Google Scholar]

  91. Smith, J. M., & Mancy, R. (2018). Exploring the relationship between metacognitive and collaborative talk during group mathematical problem-solving–what do we mean by collaborative metacognition?. Research in Mathematics Education, 20(1), 14-36. doi:10.1080/14794802.2017.1410215

  92. [Article]     [Google Scholar]

  93. Stacey, K. (2011). The PISA View of Mathematical Literacy in Indonesia. Journal on Mathematics Education, 2(2), 95-126. doi:10.22342/jme.2.2.746.95-126

  94. [Article]     [Google Scholar]

  95. Stillman, G., & Mevarech, Z. (2010). Metacognition research in mathematics education: from hot topic to mature field. ZDM, 42, 145-148. doi:10.1007/s11858-010-0245-x

  96. [Article]     [Google Scholar]

  97. Su, H. F. H., Ricci, F. A., & Mnatsakanian, M. (2016). Mathematical teaching strategies: Pathways to critical thinking and metacognition. International Journal of Research in Education and Science, 2(1), 190-200.

  98. [Article]     [Google Scholar]


  100. Sulistiyarini, A. (2021). School Literacy Movement (SLM) as a Solution to Increase Reading Interest of Indonesian Students. Ilkogretim Online, 20(1), 1324-1334. doi:10.17051/ilkonline.2021.01.127

  101. [Article]     [Google Scholar]

  102. Tambychik, T., & Meerah, T. S. M. (2010). Students’ difficulties in mathematics problem-solving: What do they say?. Procedia-Social and Behavioral Sciences, 8, 142-151. doi:10.1016/j.sbspro.2010.12.020

  103. [Article]     [Google Scholar]

  104. Veenman, M. V., & van Cleef, D. (2019). Measuring metacognitive skills for mathematics: students’ self-reports versus on-line assessment methods. ZDM, 51(4), 691-701. doi:10.1007/s11858-018-1006-5

  105. [Article]     [Google Scholar]

  106. Veenman, M. V., van Hout-Wolters, B. H., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and learning, 1(1), 3-14. doi:10.1007/s11409-006-6893-0

  107. [Article]     [Google Scholar]

  108. Yee, S. P., & Bostic, J. D. (2014). Developing a contextualization of students’ mathematical problem solving. The Journal of Mathematical Behavior, 36, 1-19. doi:10.1016/j.jmathb.2014.08.002

  109. [Article]     [Google Scholar]

  110. Yong, H. T., & Kiong, L. N. (2005). Metacognitive aspect of mathematics problem solving. In 3rd East Asia Regional Conference on Mathematics Education (ICMI Regional Conference).

  111. [Google Scholar]

  112. Yong, S. T., Gates, P., & Chan, A. T. Y. (2019). Similarities and differences in learning of metacognitive skills: Computer games versus mathematics education. International Journal of Game-Based Learning (IJGBL), 9(1), 1-14. doi:10.4018/IJGBL.2019010101

  113. [Article]     [Google Scholar]

  114. Zepeda, C. D., Hlutkowsky, C. O., Partika, A. C., & Nokes-Malach, T. J. (2019). Identifying teachers’ supports of metacognition through classroom talk and its relation to growth in conceptual learning. Journal of Educational Psychology, 111(3), 522-541. doi:10.1037/edu0000300

  115. [Article]     [Google Scholar]

  116. Zhong, B., & Xia, L. (2020). A systematic review on exploring the potential of educational robotics in mathematics education. International Journal of Science and Mathematics Education, 18(1), 79-101. doi:10.1007/s10763-018-09939-y

  117. [Article]     [Google Scholar]

  118. Zhussupova, R., & Kazbekova, M. (2016). Metacognitive strategies as points in teaching reading comprehension. Procedia-social and behavioral sciences, 228, 593-600. doi:10.1016/j.sbspro.2016.07.091

  119. [Article]     [Google Scholar]