Main Article Content

Abstract

The purpose of this research is to describe proil cognitive structure of students in understanding the concept of real analysis. This research is part of the research development of the theory of cognitive structure of students Mathematics Education Program at the University of Bengkulu. The results of this research are: 1)there are seven models decompositions of genetic students mathematics education reviewed based on the SRP Model about the concepts of Real Analysis namely Pra-Intra Level, Level intra, Level semi-inter, Level inter, Level semi-trans, Trans Level, level and Extended-Trans (only theoretic level while empirically not found); 2) There are six models decompositions of genetic students mathematics education reviewed based on KA about the concepts of Real Analysis namely Level 0: Objects of concrete steps; Level 1: Models Semi-concrete steps; Level 2: Models Theoretic; Level 3: Language in Domain Example; Level 4: Mathematical Language; Level 5: Inferensi Model. Profile of cognitive structure of mathematics education student at the University of Bengkulu is 6.25% Students located on the Basic Level (Pra-Intra Level with concrete objects), there is 8.75% Students located at Level 0 (intra Level with concrete objects), there are 15,00% Students located at Level 1 (semi-Level inter with Semi-Concrete Model), there are 33.75 percent students located on Level 2 (Level inter with theoretical model), there are 22.50 percent students located at Level 3 (Semi-trans Level with the Bible in Domain example), there are located on the student percent during the Level 4 (Trans Level with the language of Mathematics), and there are 0 percent students located at Level 5 (Level Extended-Trans with Inferensi Model). Students Education Mathematics at the University of Bengkulu pembangunnya element is functional can achieve Trans Level, students will be able to set up activities and make the algorithm that formed the concept/principles with the right. Functional students can also perform the process of abstraction using the rules in a system of mathematics.

Keywords

cognitive structure of the understanding of the concepts profile

Article Details

References

  1. Afrilianto, M. (2012). Peningkatan Pemahaman Konsep dan Kompetensi Strategis Matematis Siswa SMP dengan Pendekatan Metaphorical Thinking. Infinity, 1(2)
  2. Baddely, A. (1998). Your Memory A User’s Guide. London: Prion
  3. Darusman, R. (2014). Penerapan Metode Mind Mapping (Peta Pikiran) untuk Meningkatkan Kemampuan Berpikir Kreatif Matematik Siswa SMP. Infinity, 3 (2)
  4. DeVries, D. J. (2000). RUMEC/APOS Theory. http://www.cs.gsu.edu/~rumec/
  5. Dubinsky, E. & Lewin,P. (1986). Reflective abstraction and Mathematical Induction: The Decomposition of Induction and Compactness. Journal Mathematical Behavior. Vol. 5 http: www.sciencedirect/science/journal/
  6. Dubinsky, E. & McDonald, M. A. (2000). APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research. http:/www.telri.ac.uk/CM/Paper.pdf
  7. Dubinsky, E. (1987). Teaching Mathematical Induction. Journal Mathematical Behavior. Vol. 6 No. 1http: www.sciencedirect/science/journal/
  8. Dubinsky, E. (1989). On Teaching Mathematical Induction II. Journal Mathematical Behavior. Vol. 8http: www.sciencedirect/science/journal/
  9. Dubinsky, E. (1995). ISELT: A Programming Language for Learning Mathematics. Communications on Pure and Applied Mathematics. Vol. XLVIII
  10. Dubinsky, E. (2000). Using a Theory of Learning in College Mathematics Course. Newsletter No. 12 http:/www.bham.ac.uk/ctimath/talum12.htm or http:/www.telri.ac.uk/
  11. Dubinsky, E; & Yiparaki, Olga. (2001). Predicate Calculus and the Mathematical Thinking of Student . http://www.cs.cornell.edu/info/people/gies/symposium/dubinsky.htm
  12. Glaser, B. G. & Strauss, A. L. (1967). Discovery of Grounded Theory: Strategies for Qualitative Research. Chicago: Aldine
  13. Hendriana, H. (2012). Pembelajaran Matematika Humanis dengan Metaphorical Thinking untuk Meningkatkan Kepercayaan Diri Siswa. Infinity, 1 (1)
  14. Hunt, R. R. & Ellis, H. C. (1999). Fundamental of Cognitive Psychology. Sixth Edition. Boston:McGraw-Hill College.
  15. Piaget, J, & Garcia, R. (1989). Psychologies and the History of Science. http://www.piaget.org
  16. Schwank, I. (1993). On The Analysis of Cognitive Structures in Algorithmic Thinking. Journal of Mathematical Behavior. 12 (2), 209-231.
  17. Solso, R.L. (1995). Cognitive Psychology. Boston: Allyn and Bacon.
  18. Widada, W. & Herawaty, D. (2005). Studi tentang Dekomposisi Genetik Mahasiswa dalam Mempelajari Teori Graph (berbasis Triad Level). Laporan Penelitian Fundamental 2005.
  19. Widada, W. (2001). Struktur Representasi Pengetahuan mahasiswa tentang Grafik Fungsi dan Deret Tak hingga. Artikel disajikan dalam Seminar Nasional Matematika II FMIPA UNNES Semarang 27 Agustus 2001.
  20. Widada, W. (2002a). Skema mahasiswa tentang Sketsa Grafik Fungsi. Artikel dimuat dalam Jurnal Pendidikan Matematika dan Sains (JPMS) tahun VII No. 3, dan disajikan pada Seminar Nasional Hasil Penelitian MIPA yang Diselenggarakan oleh FMIPA UNY di Hotel Ambarukmo 28 Oktober 2002.
  21. Widada, W. (2002b). Teori APOS sebagai Suatu Alat Analisis Dekomposisi Genetik terhadap Perkembangan Konsep Matematika Seseorang. Artikel dimuat dalam Journal of Indonesian Mathematicel Society (MIHMI) Vol. 8 No. 3, setelah disajikan dalam pertemuan ilmiah mahasiswa S3 Matematika dan Pendidikan Matematika se Indonesia & The Indonesian Applied Mathematical Society in The netherlands (IAMS-N) di P4M ITB 4-5 Juli 2002.
  22. Widada, W. (2002c). Model Interaksi Skema mahasiswa tentang Permasalahan Grafik Fungsi pada Kalkulus. Artikel dimuat dalam Jurnal Matematika atau Pembelajarannya UM Malang Tahun VIII Juli 2002, dan disajikan pada Konferensi Nasional Matematika XI di UM Malang, 22-25 Juli 2002
  23. Widada, W. (2002d). Sikel Pengajaran ACE: Membantu mahasiswa dalam proses mengkonstruksi matematika. Artikel disajikan dalam Seminar Nasional MIPA UM Malang berkerjasama dengan Japan International Cooperation Agency (IMSTEP-JICA) 5 Agustus 2002.
  24. Widada, W. (2002e). Model Interaksi dari Beberapa Objek Matematika. Artikel dimuat dalam Jurnal Pendidikan Dasar dan Menengah Gentengkali. Vol. 4 No.1.2
  25. Widada, W. (2003). Interaksi Skema Mahasiswa Model Baru tentang Permasalahan Grafik Fungsi pada Kalkulus. Laporan Penelitian Mandiri:Tidak dipublikasikan
  26. Widada, W. (2004). Struktur Representasi Pengetahuan Mahasiswa tentang Deret Tak hingga (berbasis Triad Level). Laporan Penelitian Mandiri:Tidak dipublikasikan
  27. Widada, W. (2006). Dekomposisi Genetik Mahasiswa dalam Mempelajari Teori Graph. Artikel dimuat dalam Jurnal Ilmiah Multi Science Inspirasi. Monograph II tahun 2006
  28. Widada, W. (2007). Pengembangan teori perkembangan skema (triad level) tentang Kalkulus pada mahassiswa matematika FKIP UMB. diterbitkan dalam Jurnal Inspirasi V I tahun 2007.
  29. Widada, W. (2009). Pengembangan Teori dan Model Pembelajaran Matematika Berbasis Level Triad++ untuk Mahasiswa Analisis Real (Studi di FKIP Universitas Bengkulu). Ditjen Dikti: Laporan Hasil Penelitian Hibah Kompetensi.
  30. Widada, W. (2010). Pengembangan Lanjutan Teori dan Model Pembelajaran Teori Graph Berbasis Extended Level Triad++ untuk Mahasiswa FKIP Universitas Bengkulu. Ditjen Dikti: Laporan Hasil Penelitian Hibah Kompetensi.
  31. Widada, W. (2015). The Existence of Students in Trans Extended Cognitive Development on Learning of Graph Theory. Jurnal Math Educator Nusantara. 1 (1), 1-20
  32. Widada, W. & Herawaty, D. (2016). Dekomposisi Genetik Mahasiswa Pendidikan Matematika Ditinjau Berdasarkan Model Struktur Representasi Pengetahuan (SRP) dan Kemampuan Abstraksi (KA) tentang Konsep-konsep Analisis Real. Artikel dimuat dalam Prosiding Jambi International Seminar on Education. 3-5 April 2016.
  33. Widada, W. (2016) Kemampuan Abstraksi Mahasiswa Pendidikan Matematika dalam Memahami Konsep-Konsep Analisis Real ditinjau berdasarkan Struktur Kognitif. Artikel dimuat dalam Prosiding SEMIRATA MIPA BKS Barat di Unsri 22-24 Mei 2016.