Main Article Content

Abstract

The importance ability of mathematical representation and connection to owned by the student really help students in understanding the mathematical concepts in the form of pictures, symbols, and the written word. The use of mathematical representation and the correct connection by students will help students make mathematical ideas more concrete and can connect a concept to another concept, so that students can develop a view of mathematics as a whole integration. This research aims to describe and analyze the ability of representation and mathematical connection on the topics of analytical geometry. The research method was descriptive with the subject as much as 22 mathematics students. Data collected through tests and interviews. The results show that the average ability of representation is 46.00; the average mathematical connection ability is 36.77. This means both the abilities still belongs to low, particularly for the ability of mathematical connection.

Keywords

Mathematical Representation Mathematical Connection and Analytical Geometry

Article Details

References

  1. Committee on the Undergraduate Program in Mathematics. (2004). Undergraduate Programs and Courses in the Mathematical Sciences: CUPM Curriculum Guide 2004. http://www.maa.org/cupm/summary.pdf.
  2. Coxford, A.F. (1995). The Case for Representation.Dalam P.A. House dan A.F Coxford (Eds). Yearbook Connecting Mathematics Across The Curriculum. Reston, VA: The National Council of Teachers of Mathematics.
  3. Hasanah,A. (2004). Mengembangkan Kemampuan Pemahaman Matematika Siswa SMP melalui Pembelajaran Berbasis Masalah yang Menekankan Pada Representasi Matematika.Tesis PPs UPI. Bandung: Tidak Diterbitkan.
  4. Hudojo, H. (2002). Representasi Belajar Berbasis Masalah.JournalMatematika atau Pembelajarannya. ISSN:085-7792. Tahun VIII, Edisi Khusus.
  5. Hwang,W. Y., Chen, N. S., Dung, J. J., & Yang, Y. L. (2007). Multiple Representation Skill and Creativity Effects on Mathematical Problem Solving using a Multimedia Whiteboard System.Educational Technology and Society.Vol 10 No. 2: 191-212.
  6. Jones, B.F., & Knuth, R.A. (1991).What does research about mathematics?[Online]. Tersedia: http://www. ncrl.org/sdrs/areas/stw_esys/2math.html.
  7. Jones, A.D. (2000). The Fifth Process Standard: An Argument To Include Representation In Standar 2000. [Online]. Available: http://www.math.umd.edu/~dac/650/jonespaper.html.
  8. Kaput, J. J dan Goldin, G. A. (2004).A Join Perspective on the Idea of Representation in Learning and Doing Mathematics.[Online]. Tersedia: http://www.simmalac.usmassad.edu.
  9. NCTM (2000).Principles and Standards for School Mathematics.Reston: Virginia.
  10. Nurhasanah, F. (2010).Abstraksi Siswa SMP dalam Belajar Geometri melalui Penerapan Model Van Hiele dan Geometer’s Sketchpad (Junior High School Students’ Abstraction in Learning Geometry Through Van Hiele’s Model and Geometer’s Sketchpad). Tesis SPS UPI Bandung: Tidak Diterbitkan.
  11. Ruseffendi, E.T. (2006). Pengantar kepada Membantu Guru Mengembangkan Kompetensinya dalam Pengajaran Matematika untuk Meningkatkan CBSA. Bandung: Tarsito.
  12. Siregar, N. (2009). Studi Perbandingan Kemampuan Penalaran Matematik Siswa Madrasah Tsanawiyah Kelas yangbelajar geometri Berbantuan Geometer’s Sketchpad dengan Siswa yang Belajar tanpa Geometer’s Sketchpad. Tesis SPs UPI Bandung: Tidak Diterbitkan.
  13. Suhendar (2007). Meningkatkan Kemampuan Komunikasi dan Koneksi Matematika Siswa SMP yang Berkemampuan Rendah Melalui Pendekatan Konstektual dengan Pemberian Tugas Tambahan. Tesis pada SPs UPI: Tidak diterbitkan.
  14. Sumarmo, U. (2010). Berfikir dan Disposisi: Apa, Mengapa dan Bagaimana Dikembangkan pada Peserta Didik. FPMIPA UPI.: Tidak Diterbitkan.
  15. Sunardi.(2007). Hubungan Tingkat Penalaran Formal dan Tingkat Perkembangan Konsep Geometri Siswa. Jurnal Ilmu Pendidikan. Jakarta: LPTK dan ISPI.
  16. Wahyudin. (2008). Pembelajaran dan Model-Model Pembelajaran. Bandung: UPI.