STUDENTS' GEOMETRIC THINKING ON TRIANGLES: MUCH IMPROVEMENT IS NEEDED

##plugins.themes.bootstrap3.article.main##

Joanne Ramirez Casanova
Claudeth Cathleen Canlas Cantoria
Minie Rose Caramoan Lapinid

Abstract

A look into students’ misconceptions help explain the very low geometric thinking and may assist teachers in correcting errors to aid students in reaching a higher van Hiele geometric thinking level. In this study, students’ geometric thinking was described using the van Hiele levels and misconceptions on triangles. Participants (N=30) were Grade 9 students in the Philippines. More than half of the participants were in the van Hiele’s visualization level. Most students had imprecise use of terminologies. A few had misconceptions on class inclusion, especially when considering isosceles right triangles and obtuse triangles. Very few students correctly recognized the famous Pythagorean Theorem. Implications for more effective geometry teaching are considered.

##plugins.themes.bootstrap3.article.details##


Section
Articles


Author Biographies

Joanne Ramirez Casanova, De La Salle University - Manila

Science Education Department

Graduate Student

Minie Rose Caramoan Lapinid, De La Salle University - Manila

Science Education Department

Chairperson

Associate Professor

References

Atebe, H. U. (2008). Student's van Hiele levels of geometric thought and conception in plane geometry: a collective case study of Nigeria and South Africa. Doctoral dissertation. Makhanda: Rhodes University.

[Google Scholar]

 

Atebe, H. U., & Schafer, M. (2010). Beyond teaching language: towards terminological primacy in learners' geometric conceptualisation. Pythagoras, 2010(71), 53-64. doi:10.4102/pythagoras.v0i71.7

[Article]     [Google Scholar]

 

Bamberger, H. J., Oberdorf, C., & Schultz-Ferrell, K. (2010). Math misconceptions: PreK-grade 5: From misunderstanding to deep understanding. Portsmouth: Heinemann.

[Google Scholar]

 

Banerjee, R., & Subramaniam, K. (2012). Evolution of a teaching approach for beginning algebra. Educational Studies in Mathematics, 80(3), 351-367. doi:10.1007/s10649-011-9353-y

[Article]     [Google Scholar]


Barrett, J. E., & Clements, D. H. (2003). Quantifying path length: Fourth-grade children's developing abstractions for linear measurement. Cognition and Instruction, 21(4), 475-520. doi:10.1207/s1532690xci2104_4

[Article]     [Google Scholar]

 

Brandell, J. L. (1994). Helping students write paragraph proofs in geometry. The Mathematics Teacher, 87(7), 498-502. doi:10.5951/MT.87.7.0498

[Article]     [Google Scholar]

 

Confrey, J. (1990). Chapter 1: A review of the research on student conceptions in mathematics, science, and programming. Review of research in education, 16(1), 3-56. doi:10.3102/0091732X016001003

[Article]     [Google Scholar]

 

Contreras, R. S. (2009). Investigating the van hiele levels of geometric understanding of high school students on quadrilaterals. Masteral Thesis. Manila: De La Salle University. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/3787

[Article]     [Google Scholar]

 

Crawford, M. L. (2001). Teaching contextually. Research, Rationale, and Techniques for Improving Student Motivation and Achievement in Mathematics and Science. Texas: Cord.

[Article]     [Google Scholar]

 

de Villiers, M. (2010). Algumas reflexões sobre a teoria de van Hiele. Educação matemática pesquisa: Revista do programa de estudos pós-graduados em educação matemática, 12(3), 400-431.

[Google Scholar]

 

Drews, D., Dudgeon, J., Hansen, A., Lawton, F., & Surtees, L. (Eds.). (2005). Children′ s errors in mathematics: Understanding common misconceptions in primary schools. London: SAGE.

[Google Scholar]

 

Edwards, T. G. (2000). Some big ideas of algebra in the middle grades. Mathematics Teaching in the Middle school, 6(1), 26-31. doi:10.5951/MTMS.6.1.0026

[Article]     [Google Scholar]

 

Fitriyani, H., Widodo, S. A., & Hendroanto, A. (2018). Students’ geometric thinking based on van Hiele’s theory. Infinity Journal, 7(1), 55-60. doi:10.22460/infinity.v7i1.p55-60

[Article]     [Google Scholar]

 

French, D. (2004). Teaching and learning geometry. London: Continuum International Publishing Group.

[Google Scholar]

 

Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education. Monograph, 3, i-196. doi:10.2307/749957

[Article]     [Google Scholar]

 

Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice teachers' misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20(1), 95-102. doi:10.2307/749100

[Article]     [Google Scholar]

 

Groth, R. E. (2005). Linking theory and practice in teaching geometry. The Mathematics Teacher, 99(1), 27-30. doi:10.5951/MT.99.1.0027

[Article]     [Google Scholar]

 

Gutiérrez, A., Jaime, A., & Fortuny, J. M. (1991). An alternative paradigm to evaluate the acquisition of the van Hiele levels. Journal for Research in Mathematics education, 22(3), 237-251. doi:10.2307/749076

[Article]     [Google Scholar]

 

Johnston-Wilder, S., & Mason, J. (2005). Developing thinking in geometry. London: Paul Chapman Publishing.

[Google Scholar]

 

Jones, K. (2003). Issues in the teaching and learning of geometry. In L. Haggarty (Ed.). Aspects of teaching secondary mathematics: Perspectives on practice (pp. 121–139). London: Routledge.

[Article]     [Google Scholar]

 

Lim, S. K. (2011). Applying the van Hiele theory to the teaching of secondary school geometry. Teaching and Learning, 13(1), 32–40.

[Article]     [Google Scholar]

 

Luneta, K. (2015). Understanding students' misconceptions: an analysis of final Grade 12 examination questions in geometry. Pythagoras, 36(1), 1-11. doi:10.4102/pythagoras.v36i1.261

[Article]     [Google Scholar]

 

Ma, H. L., Lee, D. C., Lin, S. H., & Wu, D. B. (2015). A study of van Hiele of geometric thinking among 1st through 6th graders. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 1181-1196. doi:10.12973/eurasia.2015.1412a

[Article]     [Google Scholar]

 

Mason, M. (1998). The van Hiele levels of geometric understanding. The professional handbook for teachers: Geometry, 4, 4-8.

[Article]     [Google Scholar]

 

Mayberry, J. (1983). The van Hiele levels of geometric thought in undergraduate preservice teachers. Journal for research in mathematics education, 14(1), 58-69. doi:10.5951/jresematheduc.14.1.0058

[Article]     [Google Scholar]

 

Metila, R. A., Pradilla, L. A. S., & Williams, A. B. (2016). The challenge of implementing mother tongue education in linguistically diverse contexts: The case of the Philippines. The Asia-Pacific Education Researcher, 25(5), 781-789. doi:10.1007/s40299-016-0310-5

[Article]     [Google Scholar]

 

Radatz, H. (1979). Error analysis in mathematics education. Journal for Research in mathematics Education, 10(3), 163-172. doi:10.5951/jresematheduc.10.3.0163

[Article]     [Google Scholar]

 

Sarama, J., Clements, D. H., Parmar, R. S., & Garrison, R. (2011). Geometry. In F. Fennell (Ed.). Achieving fluency: Special education and mathematics (pp. 163–196). Reston, Va: National Council of Teachers of Mathematics.

[Article]     [Google Scholar]

 

Senk, S. L. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for research in mathematics education, 20(3), 309-321. doi:10.2307/749519

[Article]     [Google Scholar]

 

Solaiman, N. P., Magno, S. N., & Aman, J. P. (2017). Assessment of the third year high school students’ van Hiele levels of geometric conceptual understanding in selected secondary public schools in Lanao del Sur. Journal of Social Sciences (COES&RJ-JSS), 6(3), 603-609. doi:10.25255/jss.2017.6.3.603.609

[Article]     [Google Scholar]

 

Swan, M. (2001). Dealing with misconceptions in mathematics. In P. Gates (Ed.). Issues in Mathematics Teaching (pp. 147–165). London: Routledge. doi:10.4324/9780203469934

[Article]     [Google Scholar]

 

van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2019). Elementary and middle school mathematics: Teaching developmentally (10th ed.). London: Pearson Education UK.

[Article]

 

van der Sandt, S., & Nieuwoudt, H. D. (2003). Grade 7 teachers' and prospective teachers' content knowledge of geometry. South African Journal of Education, 23(3), 199-205.

[Article]     [Google Scholar]