Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Atebe, H. U. (2008). Student's van Hiele levels of geometric thought and conception in plane geometry: a collective case study of Nigeria and South Africa. Doctoral dissertation. Makhanda: Rhodes University.
Atebe, H. U., & Schafer, M. (2010). Beyond teaching language: towards terminological primacy in learners' geometric conceptualisation. Pythagoras, 2010(71), 53-64. doi:10.4102/pythagoras.v0i71.7
Bamberger, H. J., Oberdorf, C., & Schultz-Ferrell, K. (2010). Math misconceptions: PreK-grade 5: From misunderstanding to deep understanding. Portsmouth: Heinemann.
Banerjee, R., & Subramaniam, K. (2012). Evolution of a teaching approach for beginning algebra. Educational Studies in Mathematics, 80(3), 351-367. doi:10.1007/s10649-011-9353-y
Barrett, J. E., & Clements, D. H. (2003). Quantifying path length: Fourth-grade children's developing abstractions for linear measurement. Cognition and Instruction, 21(4), 475-520. doi:10.1207/s1532690xci2104_4Brandell, J. L. (1994). Helping students write paragraph proofs in geometry. The Mathematics Teacher, 87(7), 498-502. doi:10.5951/MT.87.7.0498
Confrey, J. (1990). Chapter 1: A review of the research on student conceptions in mathematics, science, and programming. Review of research in education, 16(1), 3-56. doi:10.3102/0091732X016001003
Contreras, R. S. (2009). Investigating the van hiele levels of geometric understanding of high school students on quadrilaterals. Masteral Thesis. Manila: De La Salle University. Retrieved from https://animorepository.dlsu.edu.ph/etd_masteral/3787
Crawford, M. L. (2001). Teaching contextually. Research, Rationale, and Techniques for Improving Student Motivation and Achievement in Mathematics and Science. Texas: Cord.
de Villiers, M. (2010). Algumas reflexões sobre a teoria de van Hiele. Educação matemática pesquisa: Revista do programa de estudos pós-graduados em educação matemática, 12(3), 400-431.
Drews, D., Dudgeon, J., Hansen, A., Lawton, F., & Surtees, L. (Eds.). (2005). Children′ s errors in mathematics: Understanding common misconceptions in primary schools. London: SAGE.
Edwards, T. G. (2000). Some big ideas of algebra in the middle grades. Mathematics Teaching in the Middle school, 6(1), 26-31. doi:10.5951/MTMS.6.1.0026
Fitriyani, H., Widodo, S. A., & Hendroanto, A. (2018). Students’ geometric thinking based on van Hiele’s theory. Infinity Journal, 7(1), 55-60. doi:10.22460/infinity.v7i1.p55-60
French, D. (2004). Teaching and learning geometry. London: Continuum International Publishing Group.
Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education. Monograph, 3, i-196. doi:10.2307/749957
Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice teachers' misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20(1), 95-102. doi:10.2307/749100
Groth, R. E. (2005). Linking theory and practice in teaching geometry. The Mathematics Teacher, 99(1), 27-30. doi:10.5951/MT.99.1.0027
Gutiérrez, A., Jaime, A., & Fortuny, J. M. (1991). An alternative paradigm to evaluate the acquisition of the van Hiele levels. Journal for Research in Mathematics education, 22(3), 237-251. doi:10.2307/749076
Johnston-Wilder, S., & Mason, J. (2005). Developing thinking in geometry. London: Paul Chapman Publishing.
Jones, K. (2003). Issues in the teaching and learning of geometry. In L. Haggarty (Ed.). Aspects of teaching secondary mathematics: Perspectives on practice (pp. 121–139). London: Routledge.
Lim, S. K. (2011). Applying the van Hiele theory to the teaching of secondary school geometry. Teaching and Learning, 13(1), 32–40.
Luneta, K. (2015). Understanding students' misconceptions: an analysis of final Grade 12 examination questions in geometry. Pythagoras, 36(1), 1-11. doi:10.4102/pythagoras.v36i1.261
Ma, H. L., Lee, D. C., Lin, S. H., & Wu, D. B. (2015). A study of van Hiele of geometric thinking among 1st through 6th graders. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 1181-1196. doi:10.12973/eurasia.2015.1412a
Mason, M. (1998). The van Hiele levels of geometric understanding. The professional handbook for teachers: Geometry, 4, 4-8.
Mayberry, J. (1983). The van Hiele levels of geometric thought in undergraduate preservice teachers. Journal for research in mathematics education, 14(1), 58-69. doi:10.5951/jresematheduc.14.1.0058
Metila, R. A., Pradilla, L. A. S., & Williams, A. B. (2016). The challenge of implementing mother tongue education in linguistically diverse contexts: The case of the Philippines. The Asia-Pacific Education Researcher, 25(5), 781-789. doi:10.1007/s40299-016-0310-5
Radatz, H. (1979). Error analysis in mathematics education. Journal for Research in mathematics Education, 10(3), 163-172. doi:10.5951/jresematheduc.10.3.0163
Sarama, J., Clements, D. H., Parmar, R. S., & Garrison, R. (2011). Geometry. In F. Fennell (Ed.). Achieving fluency: Special education and mathematics (pp. 163–196). Reston, Va: National Council of Teachers of Mathematics.
Senk, S. L. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for research in mathematics education, 20(3), 309-321. doi:10.2307/749519
Solaiman, N. P., Magno, S. N., & Aman, J. P. (2017). Assessment of the third year high school students’ van Hiele levels of geometric conceptual understanding in selected secondary public schools in Lanao del Sur. Journal of Social Sciences (COES&RJ-JSS), 6(3), 603-609. doi:10.25255/jss.2017.6.3.603.609
Swan, M. (2001). Dealing with misconceptions in mathematics. In P. Gates (Ed.). Issues in Mathematics Teaching (pp. 147–165). London: Routledge. doi:10.4324/9780203469934
van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2019). Elementary and middle school mathematics: Teaching developmentally (10th ed.). London: Pearson Education UK.
van der Sandt, S., & Nieuwoudt, H. D. (2003). Grade 7 teachers' and prospective teachers' content knowledge of geometry. South African Journal of Education, 23(3), 199-205.