THE PROCESS OF CONCEPTUALIZATION IN SOLVING GEOMETRIC-FUNCTION PROBLEMS

Masta Hutajulu (1)
Krisna Satrio Perbowo (2)
Fiki Alghadari (3)
Eva Dwi Minarti (4)
Wahyu Hidayat (5*) - [ http://orcid.org/0000-0002-4075-8110 ]


(1) Institut Keguruan dan Ilmu Pendidikan Siliwangi, Indonesia
(2) University of Warwick, England, United Kingdom
(3) STKIP Kusumanegara, Indonesia
(4) Institut Keguruan dan Ilmu Pendidikan Siliwangi, Indonesia
(5) Institut Keguruan dan Ilmu Pendidikan Siliwangi, Indonesia
(*) Corresponding Author


Abstract


Functional analysis has been of interest and the thinking of students should be prepared.  Analyzing the process of conceptualizing geometric function problem solving based on the dimensions of cognitive processes and knowledge was the purpose of this study. The subjects of this study were three students selected purposively from one of the secondary schools in Indonesia. Exploration of these studies with constant comparative techniques. The results of the data analysis show that the cognitive processes that operate and the knowledge applied by students focus on the conceptualization of algebraic representations. Based on the conceptualization process, students' conceptual systems are still fragmented because of the problem of the relationship between the concept and the basis of its relationship. As a result, procedural knowledge is more dominant.

Keywords


Bloom Taxonomy; Cognitive Process; Conceptualization; Geometric-Function; Knowledge Dimension

Full Text:

PDF

References


Alghadari, F., & Kusuma, A. P. (2018). Pendekatan analogi untuk memahami konsep dan definisi dari pemecahan masalah. In Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (SNMPM), Cirebon.

Alghadari, F., Yuni, Y., & Wulandari, A. (2019). Conceptualization in solving a geometric-function problem: an effective and efficient process. Journal of Physics: Conference Series, 1315(1), 012004. https://doi.org/10.1088/1742-6596/1315/1/012004

Bartholomew, S. R., & Strimel, G. J. (2018). Factors influencing student success on open-ended design problems. International Journal of Technology and Design Education, 28(3), 753-770. https://doi.org/10.1007/s10798-017-9415-2

Borji, V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the complementarities of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. Eurasia Journal of Mathematics, Science and Technology Education, 14(6), 2301-2315. https://doi.org/10.29333/ejmste/89514

Choi, Y. J., & Hong, J. K. (2014). On the students' thinking of the properties of derivatives. The Mathematical Education, 53(1), 25-40. https://doi.org/10.7468/mathedu.2014.53.1.25

Clancey, W. (2001). Is abstraction a kind of idea or how conceptualization works? Cognitive Science Quarterly, 1(3-4), 389-421.

Dossey, J. A. (2017). Problem solving from a mathematical standpoint. In B. Csapó & J. Funke (Eds.), The Nature of Problem Solving: Using Research to Inspire 21st Century Learning (pp. 59-72). OECD Publishing. https://doi.org/10.1787/9789264273955-6-en

Glaser, B. G. (2002). Conceptualization: On theory and theorizing using grounded theory. International journal of qualitative methods, 1(2), 23-38. https://doi.org/10.1177/160940690200100203

Hendriana, H., & Fadhillah, F. M. (2019). The students’ mathematical creative thinking ability of junior high school through problem-solving approach. Infinity Journal, 8(1), 11-20. https://doi.org/10.22460/infinity.v8i1.p11-20

Hendriana, H., Prahmana, R. C. I., & Hidayat, W. (2018). Students’ performance skills in creative mathematical reasoning. Infinity Journal, 7(2), 83-96. https://doi.org/10.22460/infinity.v7i2.p83-96

Hong, Y. Y., & Thomas, M. O. (2015). Graphical construction of a local perspective on differentiation and integration. Mathematics Education Research Journal, 27(2), 183-200. https://doi.org/10.1007/s13394-014-0135-6

Iskandar, S. M. (2016). Pendekatan keterampilan metakognitif dalam pembelajaran sains di kelas [Approach of metacognitive skills in science learning in the classroom]. Erudio Journal of Educational Innovation, 2(2), 13-20.

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. The National Academies Press.

Kop, P. M., Janssen, F. J., Drijvers, P. H., Veenman, M. V., & van Driel, J. H. (2015). Identifying a framework for graphing formulas from expert strategies. The Journal of Mathematical Behavior, 39, 121-134. https://doi.org/10.1016/j.jmathb.2015.06.002

Mumu, J., Prahmana, R. C. I., & Tanujaya, B. (2017). Construction and reconstruction concept in mathematics instruction. Journal of Physics: Conference Series, 943(1), 012011. https://doi.org/10.1088/1742-6596/943/1/012011

Nagle, C., Moore-Russo, D., Viglietti, J., & Martin, K. (2013). Calculus students’ and instructors’conceptualizations of slope: A comparison across academic levels. International Journal of Science and Mathematics Education, 11(6), 1491-1515. https://doi.org/10.1007/s10763-013-9411-2

Oberle, D., Volz, R., Staab, S., & Motik, B. (2004). An extensible ontology software environment. In S. Staab & R. Studer (Eds.), Handbook on ontologies (pp. 299-319). Springer. https://doi.org/10.1007/978-3-540-24750-0_15

Österman, T., & Bråting, K. (2019). Dewey and mathematical practice: revisiting the distinction between procedural and conceptual knowledge. Journal of Curriculum Studies, 51(4), 457-470. https://doi.org/10.1080/00220272.2019.1594388

Polya, G. (1981). Mathematical Discovery on Understanding, Learning and Teaching Problem Solving, Volumes I and II. John Wiley & Sons.

Radmehr, F., & Drake, M. (2017). Revised Bloom's taxonomy and integral calculus: unpacking the knowledge dimension. International Journal of Mathematical Education in Science and Technology, 48(8), 1206-1224. https://doi.org/10.1080/0020739X.2017.1321796

Radmehr, F., & Drake, M. (2018). An assessment-based model for exploring the solving of mathematical problems: Utilizing revised bloom’s taxonomy and facets of metacognition. Studies in Educational Evaluation, 59, 41-51. https://doi.org/10.1016/j.stueduc.2018.02.004

Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1118-1134). Oxford University Press.

Sahin, Z., Yenmez, A. A., & Erbas, A. K. (2015). Relational understanding of the derivative concept through mathematical modeling: A case study. Eurasia Journal of Mathematics, Science and Technology Education, 11(1), 177-188. https://doi.org/10.12973/eurasia.2015.1149a

Setyawan, F., Prahmana, R. C. I., Istiandaru, A., & Hendroanto, A. (2017). Visualizer’s representation in functions. Journal of Physics: Conference Series, 943(1), 012004. https://doi.org/10.1088/1742-6596/943/1/012004

Tobin, P. (2012). Mathematics Standard Level: For Use with the International Baccalaureate Diploma Programme (IB Mathematics) (F. Cirrito, Ed.). IBID Press.

Tokgoz, E., & Gualpa, G. C. (2015). STEM majors’ cognitive calculus ability to sketch a function graph. In 2015 ASEE Annual Conference & Exposition, Seattle, Washington. https://doi.org/10.18260/p.24733

Usman, A. I. (2017). Geometric error analysis in applied calculus problem solving. European Journal of Science and Mathematics Education, 5(2), 119-133. https://doi.org/10.30935/scimath/9502

Wagner, J., & Sharp, J. (2017). A calculus activity with foundations in geometric learning. The Mathematics Teacher, 110(8), 618-623. https://doi.org/10.5951/mathteacher.110.8.0618

Widodo, S. A., Nayazik, A., & Prahmana, R. (2019). Formal student thinking in mathematical problem-solving. Journal of Physics: Conference Series, 1188(1), 012087. https://doi.org/10.1088/1742-6596/1188/1/012087




DOI: https://doi.org/10.22460/infinity.v11i1.p145-162

Article Metrics

Abstract view : 199 times
PDF - 152 times

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.