Main Article Content

Abstract

Mathematical representation ability is an essential skill for students to understand mathematical concepts. Many studies have been conducted regarding this ability, but it is necessary to map existing research to provide a clearer picture of future research topics. This study aims to provide a bibliometric review of trends using mathematical representation skills in mathematics teaching research. The method in this study is bibliometric analysis, which aims to analyze and classify bibliographic material by presenting representative summaries of the literature in the Scopus database. The search was carried out using the keyword "mathematical representation" and selecting "article title" in the search menu in the Scopus.com database. Perish or Publish (PoP) software analyzes the author's name, number of document citations, document title, year of publication, document source, publisher, and document type. The results showed 99 publications and 357 citations related to mathematical representations, where the number of publications and citations fluctuated. The application of learning models and approaches, computer media, and analysis of mathematical representations is a research trend related to this variable. Therefore, paying attention to mathematical representations in learning mathematics and using effective strategies to improve students' mathematical representation abilities is essential. The findings of this study indicate the need to develop syntax and learning media based on mathematical representations to strengthen students' mathematical abilities.

Keywords

Bibliometric study Education Mathematical representation Scopus VoS viewer

Article Details

References

  1. Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37, 3-13. https://doi.org/10.1016/j.wpi.2013.12.006

  2. Abdullah, N., Zakaria, E., & Halim, L. (2012). The effect of a thinking strategy approach through visual representation on achievement and conceptual understanding in solving mathematical word problems. Asian Social Science, 8(16), 30-37. https://doi.org/10.5539/ass.v8n16p30

  3. Afifah, A. (2022). Mathematical reasoning based on gender: Mapping the literature by bibliometric analysis. IndoMath: Indonesia Mathematics Education, 5(2), 75-84.

  4. Ahmad, R. M., & Wilujeng, I. (2018). Web module with image and mathematical representation as a form of optimization ability of creative thinking and conceptual understanding. Journal of Physics: Conference Series, 1097(1), 012027. https://doi.org/10.1088/1742-6596/1097/1/012027

  5. Ahyan, S., Turmudi, T., & Juandi, D. (2021). Bibliometric analysis of research on mathematical literacy in Indonesia. Journal of Physics: Conference Series, 1869(1), 012120. https://doi.org/10.1088/1742-6596/1869/1/012120

  6. Batubara, I. H., Saragih, S., Syahputra, E., Armanto, D., Sari, I. P., Lubis, B. S., & Siregar, E. F. S. (2022). Mapping research developments on mathematics communication: bibliometric study by VosViewer. Al-Ishlah: Jurnal Pendidikan, 14(3), 2637-2648. https://doi.org/10.35445/alishlah.v14i3.925

  7. Bolden, D., Barmby, P., Raine, S., & Gardner, M. (2015). How young children view mathematical representations: A study using eye-tracking technology. Educational Research, 57(1), 59-79. https://doi.org/10.1080/00131881.2014.983718

  8. Callon, M. (1984). Some elements of a sociology of translation: Domestication of the scallops and the fishermen of St Brieuc Bay. The Sociological Review, 32(1_suppl), 196-233. https://doi.org/10.1111/j.1467-954X.1984.tb00113.x

  9. Chang, S. H., Lee, N. H., & Koay, P. L. (2017). Teaching and learning with concrete-pictorial-abstract sequence: A proposed model. The Mathematics Educator, 17(1), 1–28.

  10. Chen, Y., Sherren, K., Smit, M., & Lee, K. Y. (2023). Using social media images as data in social science research. New Media & Society, 25(4), 849-871. https://doi.org/10.1177/14614448211038761

  11. Çoban, H., & Tezci, E. (2022). Mathematical reasoning: Bibliometric analysis of the literature. OPUS Journal of Society Research, 19(45), 88-102. https://doi.org/10.26466/opusjsr.1062867

  12. Coesamin, M., Sutiarso, S., & Saputri, N. I. (2021). The relationship between emotional intelligence with student's mathematics representation ability. Technium Social Sciences Journal, 24, 65-73.

  13. Cooper, L. F. (2019). Digital technology: Impact and opportunities in dental education. Journal of Dental Education, 83(4), 379-380. https://doi.org/10.21815/JDE.019.042

  14. Darmayanti, R., Syaifuddin, M., Rizki, N., Sugianto, R., & Hasanah, N. (2022). High school students’ mathematical representation ability: Evaluation of disposition based on mastery learning assessment model (MLAM). Journal of Advanced Sciences and Mathematics Education, 2(1), 1-15.

  15. de Oliveira, O. J., da Silva, F. F., Juliani, F., Barbosa, L. C. F. M., & Nunhes, T. V. (2019). Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. In K. Suad & Z. Enver (Eds.), Scientometrics Recent Advances (pp. 47-66). IntechOpen. https://doi.org/10.5772/intechopen.85856

  16. Diaz-Nunez, C., Sanchez-Cochachin, G., Ricra-Chauca, Y., & Andrade-Arenas, L. (2021). Impact of mobile applications for a lima university in pandemic. International Journal of Advanced Computer Science and Applications, 12(2), 752-758. https://doi.org/10.14569/IJACSA.2021.0120294

  17. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070

  18. Donthu, N., Kumar, S., & Pattnaik, D. (2020). Forty-five years of Journal of Business Research: A bibliometric analysis. Journal of business research, 109, 1-14. https://doi.org/10.1016/j.jbusres.2019.10.039

  19. Duval, R. (2017). Understanding the mathematical way of thinking-The registers of semiotic representations. Springer. https://doi.org/10.1007/978-3-319-56910-9

  20. Earnest, D. (2015). From number lines to graphs in the coordinate plane: Investigating problem solving across mathematical representations. Cognition and Instruction, 33(1), 46-87. https://doi.org/10.1080/07370008.2014.994634

  21. Evendi, E. (2022). Mathematical thinking styles and its implications in science learning: A bibliometric analysis. Jurnal Penelitian Pendidikan IPA, 8(3), 1503-1511. https://doi.org/10.29303/jppipa.v8i3.1720

  22. Farokhah, L., Herman, T., & Jupri, A. (2019). Students’ ability of mathematical representation on statistics topic in elementary school. Journal of Physics: Conference Series, 1157(3), 032110. https://doi.org/10.1088/1742-6596/1157/3/032110

  23. Fauzan, A., & Diana, F. (2020). Learning trajectory for teaching number patterns using RME approach in junior high schools. Journal of Physics: Conference Series, 1470(1), 012019. https://doi.org/10.1088/1742-6596/1470/1/012019

  24. Fitriani, N., Safuni, N., & Zulkarnain, S. I. (2021). The perspective of student of the university towards education policy during covid-19 pandemic. Jurnal Transformasi Administrasi, 11(02), 175-184. https://doi.org/10.56196/jta.v11i02.194

  25. Fuad, M., Suyanto, E., Sumarno, S., Muhammad, U. A., & Suparman, S. (2022). A bibliometric analysis of technology-based foreign language learning during the COVID-19 pandemic: Direction for Indonesia language learning. International Journal of Information and Education Technology, 12(10), 983-995. https://doi.org/10.18178/ijiet.2022.12.10.1710

  26. Fuadi, D. S., Suparman, S., Juandi, D., & Martadiputra, B. A. P. (2022). Technology-assisted problem-based learning against common problem-based learning in cultivating mathematical critical thinking skills: A meta-analysis Proceedings of the 2021 4th International Conference on Education Technology Management, Tokyo, Japan. https://doi.org/10.1145/3510309.3510335

  27. Hanifah, H., Waluya, S. B., Rochmad, R., & Wardono, W. (2020). Mathematical representation ability and self-efficacy. Journal of Physics: Conference Series, 1613(1), 012062. https://doi.org/10.1088/1742-6596/1613/1/012062

  28. Haryanti, N., Wilujeng, I., & Sundari, S. (2020). Problem based learning instruction assisted by e-book to improve mathematical representation ability and curiosity attitudes on optical devices. Journal of Physics: Conference Series, 1440(1), 012045. https://doi.org/10.1088/1742-6596/1440/1/012045

  29. Hebert, M. A., & Powell, S. R. (2016). Examining fourth-grade mathematics writing: features of organization, mathematics vocabulary, and mathematical representations. Reading and Writing, 29(7), 1511-1537. https://doi.org/10.1007/s11145-016-9649-5

  30. Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684-689. https://doi.org/10.1037/0022-0663.91.4.684

  31. Helsa, Y., Suparman, S., Juandi, D., Turmudi, T., & Ghazali, M. B. (2023). A meta-analysis of the utilization of computer technology in enhancing computational thinking skills: Direction for mathematics learning. International Journal of Instruction, 16(2), 735-758. https://doi.org/10.29333/iji.2023.16239a

  32. Ikeziri, L. M., de Souza, F. B., Gupta, M. C., & de Camargo Fiorini, P. (2019). Theory of constraints: review and bibliometric analysis. International Journal of Production Research, 57(15-16), 5068-5102. https://doi.org/10.1080/00207543.2018.1518602

  33. Imama, K., & Caswita, C. (2023). An analysis of mathematical representation ability middle school students on concept congruence on learning style. Al-Jabar: Jurnal Pendidikan Matematika, 14(1), 153-163.

  34. Isyam, Y. A. N., & Hidayati, K. (2022). Students’ mathematical representation in solving mathematical problems. AIP Conference Proceedings, 2575(1). https://doi.org/10.1063/5.0108386

  35. Jaya, A., & Suparman, S. (2022). The use of CABRI software in mathematics learning for cultivating geometrical conceptual understanding: A meta-analysis Proceedings of the 2021 4th International Conference on Education Technology Management, Tokyo, Japan. https://doi.org/10.1145/3510309.3510316

  36. Jitendra, A. K., Nelson, G., Pulles, S. M., Kiss, A. J., & Houseworth, J. (2016). Is mathematical representation of problems an evidence-based strategy for students with mathematics difficulties? Exceptional Children, 83(1), 8-25. https://doi.org/10.1177/0014402915625062

  37. Juandi, D., Suparman, S., Martadiputra, B. A. P., Tamur, M., & Hasanah, A. (2022). Does mathematics domain cause the heterogeneity of students’ mathematical critical thinking skills through problem-based learning? A meta-analysis. AIP Conference Proceedings, 2468(1), 070028. https://doi.org/10.1063/5.0102714

  38. Kornia, E., Komikesari, H., & Saregar, A. (2022). Trends, challenges, and opportunities for massive open online courses (MOOCs) as the future of education in science learningTrends, challenges and opportunities for massive open online courses (MOOCs) as mass education front in learning science. Journal of Advanced Sciences and Mathematics Education, 2(1), 39-48. https://doi.org/10.58524/jasme.v2i1.109

  39. Kurniawan, H., & Kuswanto, H. (2021). Improving students’ mathematical representation of physics and critical thinking abilities using the CAKA mobile media based on local wisdom. International Association of Online Engineering. https://www.learntechlib.org/p/218914

  40. Loc, N. P., & Phuong, N. T. (2019). Mathematical representations: A study in solving mathematical word problems at grade 5–Vietnam. International Journal of Scientific & Technology Research, 8(10), 1876-1881.

  41. Mainali, B. (2021). Representation in teaching and learning mathematics. International Journal of Education in Mathematics, Science and Technology, 9(1), 1-21. https://doi.org/10.46328/ijemst.1111

  42. Muhammad, U. A., Fuad, M., Ariyani, F., & Suyanto, E. (2022). Bibliometric analysis of local wisdom-based learning: Direction for future history education research. International Journal of Evaluation and Research in Education (IJERE), 11(4), 2209-2222. https://doi.org/10.11591/ijere.v11i4.23547

  43. Mulyono, O. C. F., Sunardi, S., & Slamin, S. (2020). The profile of students’ mathematical representation in constructing line equation concept. Journal of Physics: Conference Series, 1465(1), 012048. https://doi.org/10.1088/1742-6596/1465/1/012048

  44. Muntazhimah, M., Turmudi, T., Prabawanto, S., Anwar, A., & Wahyuni, R. (2022). Bibliometric analysis of mathematics reflective thinking based on scopus database. European Online Journal of Natural and Social Sciences, 11(4), 1132-1143.

  45. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.

  46. Ngo, J., & Ngadiman, A. (2019). The impacts of edmodo on students’ performance in ESP classrooms. KnE Social Sciences, 3(10), 369–378. https://doi.org/10.18502/kss.v3i10.3918

  47. Nie, B.-D., & Cao, B.-Y. (2019). Three mathematical representations and an improved ADI method for hyperbolic heat conduction. International Journal of Heat and Mass Transfer, 135, 974-984. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.026

  48. Nirawati, R., Juandi, D., Fatimah, S., Irma, A., & Andriani, L. (2020). Mathematical representation ability of prospective student teacher in resolving transformation geometry problems reviewed in epistemology aspect. IOP Conference Series: Earth and Environmental Science, 485(1), 012068. https://doi.org/10.1088/1755-1315/485/1/012068

  49. Noto, M. S., Hartono, W., & Sundawan, D. (2016). Analysis of students mathematical representation and connection on analytical geometry subject. Infinity Journal, 5(2), 99-108. https://doi.org/10.22460/infinity.v5i2.p99-108

  50. Nurlisna, N., Anwar, A., & Subianto, M. (2020). Development of student worksheet to improve mathematical representation ability using realistic mathematics approach assisted by GeoGebra software. Journal of Physics: Conference Series, 1460(1), 012041. https://doi.org/10.1088/1742-6596/1460/1/012041

  51. Park, E.-J., & Choi, K. (2013). Analysis of student understanding of science concepts including mathematical representations: pH values and the relative differences of pH values. International Journal of Science and Mathematics Education, 11(3), 683-706. https://doi.org/10.1007/s10763-012-9359-7

  52. Pedersen, J. B., & Welch, P. H. (2018). The symbiosis of concurrency and verification: teaching and case studies. Formal Aspects of Computing, 30(2), 239-277. https://doi.org/10.1007/s00165-017-0447-x

  53. Priyadi, A. N. W., Kuswanto, H., & Sumarna, S. (2020). Android physics comics to train the mathematical representation ability on momentum and impulse of senior high school students. Journal of Physics: Conference Series, 1440(1), 012041. https://doi.org/10.1088/1742-6596/1440/1/012041

  54. Putra, F. G., Meriyati, M., Safitri, V. I., Nursa’idah, W., Putri, D., Mistasari, N., Isnaini, M., Widyawati, S., & Putra, R. W. Y. (2021). The influence of student facilitator and explaining (SFAE) learning model viewed from social skills in improving students’ mathematical representation ability. Journal of Physics: Conference Series, 1796(1), 012074. https://doi.org/10.1088/1742-6596/1796/1/012074

  55. Putra, I. S., Masriyah, M., & Sulaiman, R. (2018). Students’ translation ability of mathematical representations (symbolic and visual) based on their learning styles. Journal of Physics: Conference Series, 1108(1), 012079. https://doi.org/10.1088/1742-6596/1108/1/012079

  56. Rahayu, E. G. S., Juandi, D., & Jupri, A. (2021). Didactical design for distance concept in solid geometry to develop mathematical representation ability in vocational high school. Journal of Physics: Conference Series, 1882(1), 012077. https://doi.org/10.1088/1742-6596/1882/1/012077

  57. Rahayu, M. S. I., & Kuswanto, H. (2021). The effectiveness of the use of the Android-based Carom games comic integrated to discovery learning in improving critical thinking and mathematical representation abilities. Journal of Technology and Science Education, 11(2), 270-283. https://doi.org/10.3926/jotse.1151

  58. Safitri, G., Darhim, D., & Dasari, D. (2023). Student’s obstacles in learning surface area and volume of a rectangular prism related to mathematical representation ability. Al-Jabar: Jurnal Pendidikan Matematika, 14(1), 55-69.

  59. Samsuddin, A. F., & Retnawati, H. (2018). Mathematical representation: the roles, challenges and implication on instruction. Journal of Physics: Conference Series, 1097(1), 012152. https://doi.org/10.1088/1742-6596/1097/1/012152

  60. Santia, I., Purwanto, P., Sutawidjadja, A., Sudirman, S., & Subanji, S. (2019). Exploring mathematical representations in solving ill-structured problems: The case of quadratic function. Journal on Mathematics Education, 10(3), 365-378. https://doi.org/10.22342/jme.10.3.7600.365-378

  61. Saregar, A., Sunyono, S., Haenilah, E. Y., Hariri, H., Putra, F. G., Diani, R., Misbah, M., & Umam, R. (2022). Natural disaster education in school: A bibliometric analysis with a detailed future insight overview. International Journal of Educational Methodology, 8(4), 743-757. https://doi.org/10.12973/ijem.8.4.743

  62. Sari, E. P., & Karyati, K. (2022). CORE learning model (connecting, organizing, reflecting & extending) to improve mathematical representation ability. AIP Conference Proceedings, 2575(1). https://doi.org/10.1063/5.0110217

  63. Sari, F. P., Nikmah, S., Kuswanto, H., & Wardani, R. (2020). Development of physics comic based on local wisdom: Hopscotch (engklek) game android-assisted to improve mathematical representation ability and creative thinking of high school students. Revista Mexicana de Fisica E, 17(2), 255-262. https://doi.org/10.31349/RevMexFisE.17.255

  64. Septian, A., Darhim, D., & Prabawanto, S. (2020). Mathematical representation ability through geogebra-assisted project-based learning models. Journal of Physics: Conference Series, 1657(1), 012019. https://doi.org/10.1088/1742-6596/1657/1/012019

  65. Septian, A., Suwarman, R. F., Monariska, E., & Sugiarni, R. (2020). Somatic, auditory, visualization, intellectually learning assisted by GeoGebra to improve student’s mathematical representation skills. Journal of Physics: Conference Series, 1657(1), 012023. https://doi.org/10.1088/1742-6596/1657/1/012023

  66. Setiyadi, A., Darma, R. S., Wilujeng, I., Jumadi, J., & Kuswanto, H. (2019). Mathematical representations mapping of high school students after using multimedia learning modules assisted by an android smartphone. Journal of Physics: Conference Series, 1233(1), 012049. https://doi.org/10.1088/1742-6596/1233/1/012049

  67. Shaghaghian, Z., Burte, H., Song, D., & Yan, W. (2022, 12-16 March 2022). Design and evaluation of an augmented reality app for learning spatial transformations and their mathematical representations 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW),

  68. Sreylak, O., Sampouw, F., Saputro, T. V. D., & Lumbantobing, W. L. (2022). Mathematics concept in elementary school: A bibliometric analysis. Journal of Educational Learning and Innovation (ELIa), 2(2), 268-278. https://doi.org/10.46229/elia.v2i2.512

  69. Sternitzke, C., Bartkowski, A., & Schramm, R. (2008). Visualizing patent statistics by means of social network analysis tools. World Patent Information, 30(2), 115-131. https://doi.org/10.1016/j.wpi.2007.08.003

  70. Sulistiawati, S., Kusumah, Y. S., Dahlan, J. A., Juandi, D., Suparman, S., & Arifin, S. (2022). The trends of studies in technology-assisted inquiry-based learning: The perspective of bibliometric analysis. Journal of Engineering Science and Technology, 18(1), 69-80.

  71. Supandi, S., Waluya, S. B., Rochmad, R., Suyitno, H., & Dewi, K. (2018). Think-talk-write model for improving students' abilities in mathematical representation. International Journal of Instruction, 11(3), 77-90. https://doi.org/10.12973/iji.2018.1136a

  72. Suparman, S., & Juandi, D. (2022). Self-efficacy and mathematical ability: A meta-analysis of studies conducted in Indonesia. Pedagogika, 147(3), 26-57. https://doi.org/10.15823/p.2022.147.2

  73. Suparman, S., & Juandi, D. (2022). Upgrading mathematical problem-solving abilities through problem-based learning: A meta-analysis study in some countries. AIP Conference Proceedings, 2575(1). https://doi.org/10.1063/5.0107757

  74. Suparman, S., Juandi, D., Martadiputra, B. A. P., Badawi, A., Susanti, N., & Yunita, Y. (2022). Cultivating secondary school students’ mathematical critical thinking skills using technology-assisted problem-based learning: A meta-analysis. AIP Conference Proceedings, 2468(1). https://doi.org/10.1063/5.0102422

  75. Supriyadi, E. (2022). A bibliometrics analysis on mathematical thinking in Indonesia from scopus online database with affiliation from Indonesia. Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, 4(1), 82-98. https://doi.org/10.35316/alifmatika.2022.v4i1.82-98

  76. Suseelan, M., Chew, C. M., & Chin, H. (2022). Research on mathematics problem solving in elementary education conducted from 1969 to 2021: A bibliometric review. International Journal of Education in Mathematics, Science and Technology, 10(4), 1003-1029. https://doi.org/10.46328/ijemst.2198

  77. Taqwa, M. R. A., & Rahim, H. F. (2022). Students’ conceptual understanding on vector topic in visual and mathematical representation: a comparative study. Journal of Physics: Conference Series, 2309(1), 012060. https://doi.org/10.1088/1742-6596/2309/1/012060

  78. Umbara, U., Munir, M., Susilana, R., & Puadi, E. F. W. (2020). Increase representation in mathematics classes: Effects of computer assisted instruction development with hippo animator. International Electronic Journal of Mathematics Education, 15(2), em0567. https://doi.org/10.29333/iejme/6262

  79. Widada, W., Herawaty, D., Jumri, R., Zulfadli, Z., & Damara, B. E. P. (2019). The influence of the inquiry learning model and the Bengkulu ethnomathematics toward the ability of mathematical representation. Journal of Physics: Conference Series, 1318(1), 012085. https://doi.org/10.1088/1742-6596/1318/1/012085

  80. Widada, W., Nugroho, K. U. Z., Sari, W. P., & Pambudi, G. A. (2019). The ability of mathematical representation through realistic mathematics learning based on ethnomathematics. Journal of Physics: Conference Series, 1318(1), 012073. https://doi.org/10.1088/1742-6596/1318/1/012073

  81. Widakdo, W. A. (2017). Mathematical representation ability by using project based learning on the topic of statistics. Journal of Physics: Conference Series, 895(1), 012055. https://doi.org/10.1088/1742-6596/895/1/012055

  82. Wijayanti, K., Budhiati, R., Dewi, N. R., & Ali, A. M. (2020). The effectiveness of innovative learning model on the mathematical representation ability of students in junior high school. Journal of Physics: Conference Series, 1567(2), 022103. https://doi.org/10.1088/1742-6596/1567/2/022103

  83. Wulandari, W., Hariadi, M. H., Jumadi, J., Wilujeng, I., & Kuswanto, H. (2019). Improving mathematical representation ability of student’s senior high school by inquiry training model with google classroom. Journal of Physics: Conference Series, 1233(1), 012043. https://doi.org/10.1088/1742-6596/1233/1/012043

  84. Yani, N. F., & Soebagyo, J. (2023). Bibliometric analysis of mathematical communication skills using scopus database. Jurnal Pendidikan Matematika dan IPA, 14(1), 57-68. https://doi.org/10.26418/jpmipa.v14i1.53902

  85. Yuanita, P., Zulnaidi, H., & Zakaria, E. (2018). The effectiveness of Realistic Mathematics Education approach: The role of mathematical representation as mediator between mathematical belief and problem solving. PLoS One, 13(9), e0204847. https://doi.org/10.1371/journal.pone.0204847

  86. Zhang, J., Xu, P.-D., & Wang, F.-Y. (2020). Parallel systems and digital twins: A data-driven mathematical representation and computational framework. Acta Automatica Sinica, 46(7), 1346-1356.

  87. Zhu, J., & Liu, W. (2020). A tale of two databases: The use of web of science and scopus in academic papers. Scientometrics, 123(1), 321-335. https://doi.org/10.1007/s11192-020-03387-8