GEOMETRY EXPLORATION ACTIVITIES ASSISTED WITH DYNAMIC GEOMETRY SOFTWARE (DGS) IN A TEACHER EDUCATION CLASSROOM
##plugins.themes.bootstrap3.article.main##
Abstract
##plugins.themes.bootstrap3.article.details##
References
Arnawa, I. (2010). Mengembangkan Kemampuan Mahasiswa dalam Memvalidasi Bukti pada Aljabar Abstrak melalui Pembelajaran Berdasarkan Teori APOS. Jurnal Matematika & Sains, 14(2), 62-68.
Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225-253.
Bell, F. H. (1978). Can computers really improve school mathematics?. The mathematics teacher, 71(5), 428-433.
Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative research designs: Selection and implementation. The counseling psychologist, 35(2), 236-264.
Goldenberg, E. P. (1995). Multiple representations: A vehicle for understanding understanding. Software goes to school: Teaching for understanding with new technologies, 155-171.
Jones, K. (2002). Research on the use of dynamic geometry software: Implications for the classroom. MicroMath, 18(3), 18-20.
Jones, K., & Rodd, M. (2001). Geometry and proof. Proceedings of the British Society for Research into Learning Mathematics, 21(1), 95-100.
Kilic, H. (2013). The effects of dynamic geometry software on learning geometry. In Proceedings from CERME 8: The 8th European Society for Research in Mathematics Education Conference.
Knuth, E. J. (2002). Teachers' conceptions of proof in the context of secondary school mathematics. Journal of Mathematics Teacher Education, 5(1), 61-88.
Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-Geometry. International Journal of Computers for Mathematical Learning, 6(3), 283-317.
Maarif, S. (2017). Mengkonstruksi Bukti Geometri melalui Kegiatan Eksplorasi Berbantu Cabri II Plus. Euclid, 3(2).
Marrades, R., & Gutiérrez, Ã. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational studies in mathematics, 44(1-2), 87-125.
Mariotti, M. A. (2002). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257-281.
Mariotti, M. A., & Balacheff, N. (2008). Introduction to the special issue on didactical and epistemological perspectives on mathematical proof. ZDM: The International Journal on Mathematics Education, 40(3), 341-344.
Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in mathematics, 27(3), 249-266.
Oldknow, A. (2009). ICT bringing mathematics to life and life to mathematics. The Electronic Journal of Mathematics and Technology, 3(2), 137-148.
Perbowo, K. S., & Pradipta, T. R. (2017). Pemetaan Kemampuan Pembuktian Matematis sebagai Prasyarat Mata Kuliah Analisis Real Mahasiswa Pendidikan Matematika. KALAMATIKA Jurnal Pendidikan Matematika, 2(1), 81-90.
RodrÃguez, F., & Gutiérrez, A. (2006). Analysis of proofs produced by university mathematics students, and the influence of using Cabri software. In Proceedings of the 30th PME International Conference , 4, 433.
Sánchez, E., & Sacristán, A. I. (2003). Influential Aspects of Dynamic Geometry Activities in the Construction of Proofs. International Group for the Psychology of Mathematics Education, 4, 111-118.
Selden, A., & Selden, J. (2008). Overcoming students’ difficulties in learning to understand and construct proofs. Making the connection: Research and teaching in undergraduate mathematics, 95-110.
Weber, K. (2005). Problem-solving, proving, and learning: The relationship between problem-solving processes and learning opportunities in the activity of proof construction. The Journal of Mathematical Behavior, 24(3-4), 351-360.