Imam Kusmaryono
Mochamad Abdul Basir
Bagus Ardi Saputro


Elementary school teachers in Indonesia are required to master many subjects to be taught to their students. It is undeniable that the teachers’ mastery of knowledge (material) in some subjects inadequate. Therefore, it is worth to argue that there was a misconception in mathematics teaching in elementary schools. This research was designed using a qualitative approach. The participants of this study were 30 elementary school teachers in Semarang city area, Central Java province, Indonesia. The research data were obtained through questionnaires, and interviews. The purpose of the study was to discuss the types and causes of the misconception of mathematics teaching in elementary schools. Alternative solutions were also presented to problem-solving so that misconceptions do not occur anymore in mathematics teaching. The findings show that, teachers evenly experience types of misconceptions: (1) pre-conception, (2) under-generalization, (3) over-generalization, (4) modelling error, (5) prototyping error; and (6) process-object error in teaching mathematics in elementary schools. Some misconceptions have taken root and are difficult to remove, called "ontological misconceptions" because of teachers' years of belief that the knowledge they received was true when in fact it was not quite right.


Elementary Schools; Misconception; Ontology; Teaching Mathematics

Full Text:



Aliustaoğlu, F., Tuna, A., & Biber, A. Ç. (2018). The misconceptions of sixth grade secondary school students on fractions. International Electronic Journal of Elementary Education, 10(5), 591-599. https://doi.org/10.26822/iejee.2018541308

Anwar, Z. (2012). Pelaksanaan pembelajaran matematika di sekolah dasar. Jurnal Penelitian Ilmu Pendidikan, 5(2).

Ben-Hur, M. (2006). Concept-rich mathematics instruction: Building a strong foundation for reasoning and problem solving. ASCD.

Blazar, D., & Kraft, M. A. (2017). Teacher and teaching effects on students’ attitudes and behaviors. Educational evaluation and policy analysis, 39(1), 146-170. https://doi.org/10.3102%2F0162373716670260

Burgoon, J. N., Heddle, M. L., & Duran, E. (2011). Re-examining the similarities between teacher and student conceptions about physical science. Journal of Science Teacher Education, 22(2), 101-114. https://doi.org/10.1007/s10972-010-9196-x

Cockburn, A. D., & Littler, G. (2008). Mathematical Misconceptions: A Guide for Primary Teachers (Vol. III). California: SAGE Publications. https://doi.org/10.4135/9781446269121

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.

Desstya, A., Prasetyo, Z. K., Suyanta, Susila, I., & Irwanto (2019). Developing an Instrument to Detect Science Misconception of an Elementary School Teacher. International Journal of Instruction, 12(3), 201-218. https://doi.org/10.29333/iji.2019.12313a

Diyanahesa, N. E. H., Kusairi, S., & Latifah, E. (2017). Development of misconception diagnostic test in momentum and impulse using isomorphic problem. Journal of Physics: Theories and Applications, 1(2), 145-156. https://doi.org/10.20961/jphystheor-appl.v1i2.19314

Flevares, L. M., & Schiff, J. R. (2014). Learning mathematics in two dimensions: A review and look ahead at teaching and learning early childhood mathematics with children’s literature. Frontiers in Psychology, 5, 459. https://doi.org/10.3389/fpsyg.2014.00459

Gooding, J., & Metz, B. (2011). From misconceptions to conceptual change. The Science Teacher, 78(4), 34.

Groves, S. (2012). Developing mathematical proficiency. Journal of science and mathematics education in Southeast Asia, 35(2), 119-145.

Hughes, S., Lyddy, F., & Lambe, S. (2013). Misconceptions about psychological science: A review. Psychology Learning & Teaching, 12(1), 20-31. https://doi.org/10.2304/plat.2013.12.1.20

Kilpatrick, J. swafford, J. & Findell, B. (2001). Adding it up: Helping children learn mathematics. Mathematics Learning Study Committee: National Research Council.

Kistner, S., Rakoczy, K., Otto, B., Klieme, E., & Büttner, G. (2015). Teaching learning strategies. The role of instructional context and teacher beliefs. Journal for educational research online, 7(1), 176-197.

Kusmaryono, I., Suyitno, H., Dwijanto, D., & Dwidayati, N. (2019). The Effect of Mathematical Disposition on Mathematical Power Formation: Review of Dispositional Mental Functions. International Journal of Instruction, 12(1), 343-356. https://doi.org/10.29333/iji.2019.12123a

McMillan, J. H., & Schumacher, S. (2014). Research in education: Evidence-based inquiry. Harlow, UK.

Miles, M. B., & Huberman, M. A. (2012). Analisis Data Kualitatif: Buku Sumber Tentang Metode-Metode Baru. Universitas Indonesia_UI Press (11th ed.). Jakarta: Universitas Indonesia (UI-Press).

Mohyuddin, R. G., & Khalil, U. (2016). Misconceptions of Students in Learning Mathematics at Primary Level. Bulletin of Education and Research, 38(1), 133-162.

Moleong, L. J. (2007). Metodologi penelitian kualitatif edisi revisi. Bandung: PT Remaja Rosdakarya.

Naderifar, M., Goli, H., & Ghaljaie, F. (2017). Snowball sampling: A purposeful method of sampling in qualitative research. Strides in Development of Medical Education, 14(3), 1-6. https://doi.org/10.5812/sdme.67670

O'Leary, K., Fitzpatrick, C. L., & Hallett, D. (2017). Math anxiety is related to some, but not all, experiences with math. Frontiers in psychology, 8, 2067. https://doi.org/10.3389/fpsyg.2017.02067

OECD. (2019). PISA 2018 : Insights and Interpretations. Retrieved from https://www.oecd.org/pisa/PISA%202018%20Insights%20and%20Interpretations%20FINAL%20PDF.pdf

Ryan, J., & Williams, J. (2007). Children's mathematics 4-15: learning from errors and misconceptions: learning from errors and misconceptions. McGraw-Hill Education (UK).

Saputri, D. A. F, & Widyaningrum, T. (2016). Misconceptions Analysis on the Virus Chapter in Biology Textbooks for High School Students Grade X. International Journal of Active Learning, 1(1), 31-37.

Sarwadi, H. R. H., & Shahrill, M. (2014). Understanding students’ mathematical errors and misconceptions: The case of year 11 repeating students. Mathematics Education Trends and Research, 2014(2014), 1-10. https://doi.org/10.5899/2014/metr-00051

Skott, J. (2019). Understanding mathematics teaching and learning “in their full complexity.” Journal of Mathematics Teacher Education, 22(5), 427–431. https://doi.org/10.1007/s10857-019-09446-z

Sullivan, P., Clarke, D. J., Clarke, D. M., Farrell, L., & Gerrard, J. (2013). Processes and priorities in planning mathematics teaching. Mathematics Education Research Journal, 25(4), 457-480. https://doi.org/10.1007/s13394-012-0066-z

DOI: https://doi.org/10.22460/infinity.v9i1.p15-30

Article Metrics

Abstract view : 278 times
PDF - 101 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.