Main Article Content

Abstract

This research develops learning media with a Science, Technology, Engineering, Art, Mathematics (STEAM) approach based on Augmented Reality (AR) to improve students' mathematical problem-solving abilities on geometric concepts. This method uses design-based research (DBR). The development stages consist of needs assessment and literature review, design and development, user testing to analyze user responses and evaluation and examination of the media devices being developed. The research subjects for expert tests included media experts and education experts, practicality tests for teachers, response tests for ten high school students, and examination stage tests for 30 high schools in Indonesia. The instruments used were media expert questionnaires, education expert questionnaires, practicality questionnaires, and tests. The media developed is called Augmented Reality Mathematics (ARM). The results of this research are 1) ARM media expert test in the very good category, 2) ARM educational media expert test in the very good category, 3) ARM media practicality test in the good category, 4) responses from students who use ARM media in the very good category, and 5) ARM media can improve mathematical problem-solving abilities in the moderate category. The findings of this research are that AR media is effectively used to improve students' problem-solving abilities in medium-category geometry concepts using the STEAM approach. This research concludes that using ARM media with STEAM learning can improve problem-solving abilities in geometric concepts.

Keywords

Augmented reality Geometry Problem-solving STEAM

Article Details

References

  1. Abdullah, A. H., Julius, E., Suhairom, N., Ali, M., Abdul Talib, C., Mohamad Ashari, Z., Abdul Kohar, U. H., & Abd Rahman, S. N. S. (2022). Relationship between self-concept, emotional intelligence and problem-solving skills on secondary school students' attitude towards solving algebraic problems. Sustainability, 14(21), 14402. https://doi.org/10.3390/su142114402

  2. Aisyah, N., Susanti, E., Meryansumayeka, M., Siswono, T. Y. E., & Maat, S. M. (2023). Proving geometry theorems: Student prospective teachers’ perseverance and mathematical reasoning. Infinity Journal, 12(2), 377-392. https://doi.org/10.22460/infinity.v12i2.p377-392

  3. Arifin, A. M., Pujiastuti, H., & Sudiana, R. (2020). Pengembangan media pembelajaran STEM dengan augmented reality untuk meningkatkan kemampuan spasial matematis siswa [Development of STEM learning media with augmented reality to improve students' mathematical spatial abilities]. Jurnal Riset Pendidikan Matematika, 7(1), 59-73. https://doi.org/10.21831/jrpm.v7i1.32135

  4. Bedewy, S. E., Choi, K., Lavicza, Z., Fenyvesi, K., & Houghton, T. (2021). STEAM practices to explore ancient architectures using augmented reality and 3D printing with geogebra. Open Education Studies, 3(1), 176-187. https://doi.org/10.1515/edu-2020-0150

  5. Bedewy, S. E., Lavicza, Z., Haas, B., & Lieban, D. (2022). A STEAM practice approach to integrate architecture, culture and history to facilitate mathematical problem-solving. Education Sciences, 12(1), 9. https://doi.org/10.3390/educsci12010009

  6. Belbase, S., Mainali, B. R., Kasemsukpipat, W., Tairab, H., Gochoo, M., & Jarrah, A. (2022). At the dawn of science, technology, engineering, arts, and mathematics (STEAM) education: prospects, priorities, processes, and problems. International Journal of Mathematical Education in Science and Technology, 53(11), 2919-2955. https://doi.org/10.1080/0020739X.2021.1922943

  7. Belda-Medina, J., & Calvo-Ferrer, J. R. (2022). Integrating augmented reality in language learning: pre-service teachers’ digital competence and attitudes through the TPACK framework. Education and Information Technologies, 27(9), 12123-12146. https://doi.org/10.1007/s10639-022-11123-3

  8. Boaler, J., Brown, K., LaMar, T., Leshin, M., & Selbach-Allen, M. (2022). Infusing mindset through mathematical problem solving and collaboration: Studying the impact of a short college intervention. Education Sciences, 12(10), 694. https://doi.org/10.3390/educsci12100694

  9. Castaño-Calle, R., Jiménez-Vivas, A., Poy Castro, R., Calvo Álvarez, M. I., & Jenaro, C. (2022). Perceived benefits of future teachers on the usefulness of virtual and augmented reality in the teaching-learning process. Education Sciences, 12(12), 855. https://doi.org/10.3390/educsci12120855

  10. Cevahir, H. Ö., Muzaffer Baturay, Meltem Huri. (2022). The Effect of Animation-Based Worked Examples Supported with Augmented Reality on the Academic Achievement, Attitude and Motivation of Students towards Learning Programming. Participatory Educational Research, 9(3), 226-247. https://doi.org/10.17275/per.22.63.9.3

  11. Chiu, T. K. F., & Churchill, D. (2015). Exploring the characteristics of an optimal design of digital materials for concept learning in mathematics: Multimedia learning and variation theory. Computers & Education, 82, 280-291. https://doi.org/10.1016/j.compedu.2014.12.001

  12. del Cerro Velázquez, F., & Morales Méndez, G. (2021). Systematic review of the development of spatial intelligence through augmented reality in STEM knowledge areas. Mathematics, 9(23), 3067. https://doi.org/10.3390/math9233067

  13. del Olmo-Muñoz, J., González-Calero, J. A., Diago, P. D., Arnau, D., & Arevalillo-Herráez, M. (2023). Intelligent tutoring systems for word problem solving in COVID-19 days: could they have been (part of) the solution? ZDM – Mathematics Education, 55(1), 35-48. https://doi.org/10.1007/s11858-022-01396-w

  14. Diego-Mantecon, J.-M., Prodromou, T., Lavicza, Z., Blanco, T. F., & Ortiz-Laso, Z. (2021). An attempt to evaluate STEAM project-based instruction from a school mathematics perspective. ZDM – Mathematics Education, 53(5), 1137-1148. https://doi.org/10.1007/s11858-021-01303-9

  15. Elsayed, S. A., & Al-Najrani, H. I. (2021). Effectiveness of the augmented reality on improving the visual thinking in mathematics and academic motivation for middle school students. Eurasia Journal of Mathematics, Science and Technology Education, 17(8), em1991. https://doi.org/10.29333/ejmste/11069

  16. Fox, J., & Cavner, D. (2015). 21st-century teaching and learning in Ethiopia: Challenges and hindrances. The International Journal of Pedagogy and Curriculum, 22(2), 25-38. https://doi.org/10.18848/2327-7963/CGP/v22i02/48881

  17. Fransiska, E. D., & Akhriza, T. M. (2017). Implementasi teknologi augmented reality sebagai media pembelajaran informatif dan interaktif untuk pengenalan hewan. In Seminar Nasional Sistem Informasi (SENASIF) (pp. 636-645).

  18. Hake, R. R. (2002). Relationship of individual student normalized learning gains in mechanics with gender, high-school physics, and pretest scores on mathematics and spatial visualization. In Physics education research conference (pp. 1-14).

  19. Hanid, M. F. A., Said, M. N. H. M., Yahaya, N., & Abdullah, Z. (2022). Effects of augmented reality application integration with computational thinking in geometry topics. Education and Information Technologies, 27(7), 9485-9521. https://doi.org/10.1007/s10639-022-10994-w

  20. Hebebci, M. T., & Usta, E. (2022). The effects of integrated STEM education practices on problem solving skills, scientific creativity, and critical thinking dispositions. Participatory Educational Research, 9(6), 358-379. https://doi.org/10.17275/per.22.143.9.6

  21. Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123. https://doi.org/10.1016/j.compedu.2018.05.002

  22. Jabar, J. M., Hidayat, R., Samat, N. A., Rohizan, M. F. H., Salim, N., & Norazhar, S. A. (2022). Augmented reality learning in mathematics education: A systematic literature review. Journal of Higher Education Theory and Practice, 22(15), 183-202. https://doi.org/10.33423/jhetp.v22i15.5570

  23. Jantassova, D., Churchill, D., Shebalina, O., & Akhmetova, D. (2022). Capacity building for engineering training and technology via STEAM education. Education Sciences, 12(11), 737. https://doi.org/10.3390/educsci12110737

  24. Jesionkowska, J., Wild, F., & Deval, Y. (2020). Active learning augmented reality for STEAM education—A case study. Education Sciences, 10(8), 198. https://doi.org/10.3390/educsci10080198

  25. Katz-Buonincontro, J. (2018). Gathering STE(A)M: Policy, curricular, and programmatic developments in arts-based science, technology, engineering, and mathematics education - Introduction to the special issue of Arts Education Policy Review: STEAM Focus. Arts Education Policy Review, 119(2), 73-76. https://doi.org/10.1080/10632913.2017.1407979

  26. Kaur, D. P., Kumar, A., Dutta, R., & Malhotra, S. (2022). The role of interactive and immersive technologies in higher education: A survey. Journal of Engineering Education Transformations, 36(2), 79-86. https://doi.org/10.16920/jeet/2022/v36i2/22156

  27. Kholid, M. N., Swastika, A., Ishartono, N., Nurcahyo, A., Lam, T. T., Maharani, S., Ikram, M., Murniasih, T. R., Majid, M., & Wijaya, A. P. (2022). Hierarchy of students’ reflective thinking levels in mathematical problem solving. Acta Scientiae, 24(6), 24-59. https://doi.org/10.17648/acta.scientiae.6883

  28. Kohen, Z., & Nitzan-Tamar, O. (2022). Contextual mathematical modelling: Problem-solving characterization and feasibility. Education Sciences, 12(7), 454. https://doi.org/10.3390/educsci12070454

  29. Körtesi, P., Simonka, Z., Szabo, Z. K., Guncaga, J., & Neag, R. (2022). Challenging examples of the wise use of computer tools for the sustainability of knowledge and developing active and innovative methods in STEAM and mathematics education. Sustainability, 14(20), 12991. https://doi.org/10.3390/su142012991

  30. Lampropoulos, G., Keramopoulos, E., Diamantaras, K., & Evangelidis, G. (2022). Augmented reality and virtual reality in education: Public perspectives, sentiments, attitudes, and discourses. Education Sciences, 12(11), 798. https://doi.org/10.3390/educsci12110798

  31. Lavicza, Z., Weinhandl, R., Prodromou, T., Anđić, B., Lieban, D., Hohenwarter, M., Fenyvesi, K., Brownell, C., & Diego-Mantecón, J. M. (2022). Developing and evaluating educational innovations for STEAM education in rapidly changing digital technology environments. Sustainability, 14(12), 7237. https://doi.org/10.3390/su14127237

  32. Li, S., Shen, Y., Jiao, X., & Cai, S. (2022). Using augmented reality to enhance students' representational fluency: The case of linear functions. Mathematics, 10(10), 1718. https://doi.org/10.3390/math10101718

  33. Meryansumayeka, M., Zulkardi, Z., Putri, R. I. I., & Hiltrimartin, C. (2022). Designing geometrical learning activities assisted with ICT media for supporting students’ higher order thinking skills. Journal on Mathematics Education, 13(1), 135-148. https://doi.org/10.22342/jme.v13i1.pp135-148

  34. Naidoo, J., & Kapofu, W. (2020). Exploring female learners’ perceptions of learning geometry in mathematics. South African Journal of Education, 40(1), 1-11. https://doi.org/10.15700/saje.v40n1a1727

  35. Noor, S. (2020). Penggunaan quizizz dalam penilaian pembelajaran pada materi ruang lingkup biologi untuk meningkatkan hasil belajar siswa kelas X. 6 SMAN 7 Banjarmasin [The use of quizizz in assessing learning on biology scope material to improve the learning outcomes of class X. 6 students at SMAN 7 Banjarmasin]. Jurnal Pendidikan Hayati, 6(1), 1-7.

  36. Nuriyah, D., Sutarto, S., & Prihatin, J. (2020). The development of environmental change textbook based on STEM-Cp to improve problem-solving skills in high school biology learning. Journal of Physics: Conference Series, 1563(1), 012054. https://doi.org/10.1088/1742-6596/1563/1/012054

  37. Ouyang, F., Chen, Z., Cheng, M., Tang, Z., & Su, C.-Y. (2021). Exploring the effect of three scaffoldings on the collaborative problem-solving processes in China’s higher education. International Journal of Educational Technology in Higher Education, 18(1), 35. https://doi.org/10.1186/s41239-021-00273-y

  38. Özreçberoğlu, N., & Çağanağa, Ç. K. (2018). Making it count: Strategies for improving problem-solving skills in mathematics for students and teachers’ classroom management. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1253-1261. https://doi.org/10.29333/ejmste/82536

  39. Pertiwi, C. M., Rohaeti, E. E., & Hidayat, W. (2021). The students' mathematical problem-solving abilities, self-regulated learning, and VBA microsoft word in new normal: A development of teaching materials. Infinity Journal, 10(1), 17-30. https://doi.org/10.22460/infinity.v10i1.p17-30

  40. Primayana, K. H. (2020). Menciptakan pembelajaran berbasis pemecahan masalah dengan berorientasi pembentukan karakter untuk mencapai tujuan higher order thinking skilss (HOTS) pada anak sekolah dasar [Creating problem-solving-based learning with a character-building orientation to achieve the goal of higher-order thinking skills (HOTS) in elementary school children]. Purwadita: Jurnal Agama dan Budaya, 3(2), 85-92.

  41. Puig, A., Rodríguez, I., Baldeón, J., & Múria, S. (2022). Children building and having fun while they learn geometry. Computer Applications in Engineering Education, 30(3), 741-758. https://doi.org/10.1002/cae.22484

  42. Putra, E. A., Sudiana, R., & Pamungkas, A. S. (2020). Pengembangan smartphone learning management system (S-LMS) sebagai media pembelajaran matematika di SMA [Development of a smartphone learning management system (S-LMS) as a mathematics learning medium in high school]. Kreano, Jurnal Matematika Kreatif-Inovatif, 11(1), 36-45. https://doi.org/10.15294/kreano.v11i1.21014

  43. Rahman, N. A., Rosli, R., Rambely, A. S., Siregar, N. C., Capraro, M. M., & Capraro, R. M. (2022). Secondary school teachers' perceptions of STEM pedagogical content knowledge. Journal on Mathematics Education, 13(1), 119-134. https://doi.org/10.22342/jme.v13i1.pp119-134

  44. Rahmawati, Y., Ramadhani, S. F., & Afrizal, A. (2020). Developing students' critical thinking: A STEAM project for chemistry learning. Universal Journal of Educational Research, 8(1), 72-82. https://doi.org/10.13189/ujer.2020.080108

  45. Ramli, S. S., Maaruf, S. Z., Mohamad, S. N. A., Abdullah, N., Shamsudin, N. M., & Aris, S. R. S. (2022). STEAM-ing: Preliminary insights in consolidating arts with STEM. Asian Journal of University Education, 18(1), 152-165. https://doi.org/10.24191/ajue.v18i1.17182

  46. Rezapour Nasrabad, R. (2017). Criteria of validity and reliability in qualitative research. Journal of qualitative research in health sciences, 6(4), 493-499.

  47. Rukayah, R., Daryanto, J., Atmojo, I. R. W., Ardiansyah, R., Saputri, D. Y., & Salimi, M. (2022). Augmented Reality Media Development in STEAM Learning in Elementary Schools. Ingenierie des Systemes d'Information, 27(3), 463-471. https://doi.org/10.18280/isi.270313

  48. Sari, U., Çelik, H., Pektaş, H. M., & Yalçın, S. (2022). Effects of STEM-focused Arduino practical activities on problem-solving and entrepreneurship skills. Australasian Journal of Educational Technology, 38(3), 140-154. https://doi.org/10.14742/ajet.7293

  49. Sarkar, P., Kadam, K., & Pillai, J. S. (2020). Learners' approaches, motivation and patterns of problem-solving on lines and angles in geometry using augmented reality. Smart Learning Environments, 7(1), 17. https://doi.org/10.1186/s40561-020-00124-9

  50. Setyarto, A., Murtiyasa, B., & Sumardi, S. (2020). Development of 21st century skills in mathematics learning with steam in mts negeri 2 wonogiri. Universal Journal of Educational Research, 8(11), 5513-5528. https://doi.org/10.13189/ujer.2020.081155

  51. Sigit, D. V., Ristanto, R. H., & Mufida, S. N. (2022). Integration of project-based e-learning with STEAM: An innovative solution to learn ecological concept. International Journal of Instruction, 15(3), 23-40. https://doi.org/10.29333/iji.2022.1532a

  52. Siskawati, E., Zaenuri, Z., Waluya, S. B., & Junaedi, I. (2022). Mathematical error patterns to facilitate solving math problems for junior high school students. Journal of Higher Education Theory & Practice, 22(9), 112-117. https://doi.org/10.33423/jhetp.v22i9.5368

  53. Sukirman, D., & Setiawan, B. (2022). Designing multimedia development for English language learning: Resources of effective instructional process. World Journal on Educational Technology: Current Issues, 14(4), 1077–1093. https://doi.org/10.18844/wjet.v14i4.7620

  54. Sun, Z., Xie, K., & Anderman, L. H. (2018). The role of self-regulated learning in students' success in flipped undergraduate math courses. The Internet and Higher Education, 36, 41-53. https://doi.org/10.1016/j.iheduc.2017.09.003

  55. Sutama, S., Fuadi, D., Narimo, S., Hafida, S. H. N., Novitasari, M., Anif, S., Prayitno, H. J., Sunanih, S., & Adnan, M. (2022). Collaborative mathematics learning management: Critical thinking skills in problem solving. International Journal of Evaluation and Research in Education (IJERE), 11(3), 1015-1027. https://doi.org/10.11591/ijere.v11i3.22193

  56. Sutama, S., Prayitno, H. J., Ishartono, N., & Sari, D. P. (2020). Development of mathematics learning process by using flipped classroom integrated by STEAM Education in senior high school. Universal Journal of Educational Research, 8(8), 3690-3697. https://doi.org/10.13189/ujer.2020.080848

  57. Syamsuddin, A., Juniati, D., & Siswono, T. Y. E. (2020). Understanding the problem solving strategy based on cognitive style as a tool to investigate reflective thinking process of prospective teacher. Universal Journal of Educational Research, 8(6), 2614-2620. https://doi.org/10.13189/ujer.2020.080644

  58. Walida, S. E., Sa'dijah, C., Subanji, S., & Sisworo, S. (2022). A portrait of controversial mathematics problems and students' metacognitive awareness: A case of Indonesia. Journal of Higher Education Theory and Practice, 22(12), 51-62. https://doi.org/10.33423/jhetp.v22i12.5462

  59. Yun, S. T., Olsen, S. K., Quigley, K. C., Cannady, M. A., & Hartry, A. (2023). A review of augmented reality for informal science learning: Supporting design of intergenerational group learning. Visitor Studies, 26(1), 1-23. https://doi.org/10.1080/10645578.2022.2075205

  60. Zhou, Q., Jiang, J., Li, X. F., Hou, H. M., & Yue, S. Q. (2022). Designing an intelligent firefighting toy car using AR technology and STEAM. Mobile Information Systems, 2022, 2599715. https://doi.org/10.1155/2022/2599715

  61. Zuo, R., Talib, O., Burhanuddin, N. A. N., Li, W., & Liu, X. (2023). An empirical study of virtual reality–based learning approaches to promote motivation and mathematical achievement in mathematic. The International Journal of Science, Mathematics and Technology Learning, 31(1), 37-53. https://doi.org/10.18848/2327-7971/CGP/v31i01/37-53