STUDENTS’ GEOMETRIC THINKING BASED ON VAN HIELE’S THEORY

Harina Fitriyani
Sri Adi Widodo
Aan Hendroanto

Abstract


The current study aims to identify the development level of students’ geometric thinking in mathematics education department, Universitas Ahmad Dahlan based on van Hiele’s theory. This is a descriptive qualitative research with the respondents as many as 129 students. In addition to researchers, the instrument used in this study is a test consisting of 25 items multiple choice questions. The data is analyzed by using Milles and Huberman model. The result shows that there were 30,65% of students in pre-visualization level, 21,51% of students in visualizes level, and 29,03% of students in analyze level, 16,67% of students in informal deduction level, 2,15% of students in deduction level, and 0,00% of student in rigor level. Furthermore, findings indicated a transition level among development levels of geometric thinking in pre-analyze, pre-informal deduction, pre-deduction, and pre-rigor that were 20%; 13,44%; 6,45%; 1,08% respectively. The other findings were 40,32% of students were difficult to determine and 4,3% of students cannot be identified.


Keywords


Geometric Thinking Development; Thinking Level; Van Hiele Theory

Full Text:

PDF

References


Abidin, Z. Z., & Abu, M. S. (2011). Alleviating Geometry Levels of thinking among Indonesian students Using van Hiele Based Interactive Visual. Edupress. https://core.ac.uk/download/pdf/11790040.pdf.

Amimah, H. S., & Fitriyani, H. (2017). Level Berpikir Siswa Smp Bergaya Kognitif Refleksif Dan Impulsive Menurut Teori Van Hiele Pada Materi Segitiga. Prosiding seminar nasional Unimus.

Apriyanti, S & Fitriyani, H. (2017). Teori Van Hiele: Tingkat Berpikir Siswa Smp Bergaya Kognitif Refleksif Dan Impulsif Pada Materi Segiempat. Prosiding seminar nasional Unimus.

Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. Learning and teaching geometry, K-12, 1-16.

Darta, M. (2013). Kemampuan Deduksi Matematika Mahasiswa Tingkat Pertama Prodi Pendidikan Matematika UNPAS (Studi Kasus Untuk Tahap Berpikir Deduksi Geometri dari Van Hiele). Jurnal Pengajaran MIPA, 18(1), 16-21.

Hardianti, D., Priatna, N., & Priatna, B. A. (2017). Analysis of Geometric Thinking Students’ and Process-Guided Inquiry Learning Model. In Journal of Physics: Conference Series (Vol. 895, No. 1, p. 012088). IOP Publishing.

Jupri, A. L. (2005). Banyak Cara, Satu Jawaban: Analisis Terhadap Strategi Pemecahan Masalah Geometri. Aljupri. staf. upi. edu, 697-703.

Lestariyani, S. (2013). Identifikasi Tahap Berpikir Geometri Siswa SMP Negeri 2 Ambarawa Berdasarkan Teori Van Hiele(Doctoral dissertation, Program Studi Pendidikan Matematika FKIP-UKSW).

Miles, M. B., & Huberman, A. M. (2007). Analisis data kualitatif: buku sumber tentang metode-metode baru. Jakarta : UI press.

Noto, M. S. (2015). Efektivitas pendekatan metakognisi terhadap penalaran matematis pada mata kuliah geometri transformasi. Infinity Journal, 4(1), 22-31.

Rafianti, I. (2016). Identifikasi Tahap Berpikir Geometri Calon Guru Sekolah Dasar ditinjau dari Tahap Berpikir Van Hiele. Jurnal Penelitian dan Pembelajaran Matematika, 9(2).

Sunardi, S. (2016). Hubungan antara Tingkat Penalaran Formal dan Tingkat Perkembangan Konsep Geometri Siswa. Jurnal Ilmu Pendidikan, 9(1).

Usiskin, Z. (1982). Van Hiele Levels and Achievement in Secondary School Geometry. CDASSG Project.

Utomo, F. H., Wardhani, I. S., & Asrori, M. A. R. (2015). Komunikasi Matematika berdasarkan Teori Van Hiele pada Mata Kuliah Geometri ditinjau dari Gaya Belajar Mahasiswa Program Studi Pendidikan Matematika. CENDEKIA: Journal of Education and Teaching, 9(2), 159-170.

Van de Walle, J. A. (1998). Elementary and middle school mathematics: Teaching developmentally. Addison-Wesley Longman, Inc., 1 Jacob Way, Reading, MA 01867; toll-free.

Yudianto, E. (2011). Perkembangan kognitif siswa sekolah dasar di Jember kota berdasarkan teori van hiele. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika Program Studi Pendidikan Matematika UNEJ.




DOI: https://doi.org/10.22460/infinity.v7i1.p55-60

Article Metrics

Abstract view : 199 times
PDF - 68 times

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.