THE PROCESS OF CONCEPTUALIZATION IN SOLVING GEOMETRIC-FUNCTION PROBLEMS
##plugins.themes.bootstrap3.article.main##
Abstract
##plugins.themes.bootstrap3.article.details##
References
Alghadari, F., & Kusuma, A. P. (2018). Pendekatan analogi untuk memahami konsep dan definisi dari pemecahan masalah. In Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (SNMPM), Cirebon.
Alghadari, F., Yuni, Y., & Wulandari, A. (2019). Conceptualization in solving a geometric-function problem: an effective and efficient process. Journal of Physics: Conference Series, 1315(1), 012004. https://doi.org/10.1088/1742-6596/1315/1/012004
Bartholomew, S. R., & Strimel, G. J. (2018). Factors influencing student success on open-ended design problems. International Journal of Technology and Design Education, 28(3), 753-770. https://doi.org/10.1007/s10798-017-9415-2
Borji, V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the complementarities of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. Eurasia Journal of Mathematics, Science and Technology Education, 14(6), 2301-2315. https://doi.org/10.29333/ejmste/89514
Choi, Y. J., & Hong, J. K. (2014). On the students' thinking of the properties of derivatives. The Mathematical Education, 53(1), 25-40. https://doi.org/10.7468/mathedu.2014.53.1.25
Clancey, W. (2001). Is abstraction a kind of idea or how conceptualization works? Cognitive Science Quarterly, 1(3-4), 389-421.
Dossey, J. A. (2017). Problem solving from a mathematical standpoint. In B. Csapó & J. Funke (Eds.), The Nature of Problem Solving: Using Research to Inspire 21st Century Learning (pp. 59-72). OECD Publishing. https://doi.org/10.1787/9789264273955-6-en
Glaser, B. G. (2002). Conceptualization: On theory and theorizing using grounded theory. International journal of qualitative methods, 1(2), 23-38. https://doi.org/10.1177/160940690200100203
Hendriana, H., & Fadhillah, F. M. (2019). The students’ mathematical creative thinking ability of junior high school through problem-solving approach. Infinity Journal, 8(1), 11-20. https://doi.org/10.22460/infinity.v8i1.p11-20
Hendriana, H., Prahmana, R. C. I., & Hidayat, W. (2018). Students’ performance skills in creative mathematical reasoning. Infinity Journal, 7(2), 83-96. https://doi.org/10.22460/infinity.v7i2.p83-96
Hong, Y. Y., & Thomas, M. O. (2015). Graphical construction of a local perspective on differentiation and integration. Mathematics Education Research Journal, 27(2), 183-200. https://doi.org/10.1007/s13394-014-0135-6
Iskandar, S. M. (2016). Pendekatan keterampilan metakognitif dalam pembelajaran sains di kelas [Approach of metacognitive skills in science learning in the classroom]. Erudio Journal of Educational Innovation, 2(2), 13-20.
Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. The National Academies Press.
Kop, P. M., Janssen, F. J., Drijvers, P. H., Veenman, M. V., & van Driel, J. H. (2015). Identifying a framework for graphing formulas from expert strategies. The Journal of Mathematical Behavior, 39, 121-134. https://doi.org/10.1016/j.jmathb.2015.06.002
Mumu, J., Prahmana, R. C. I., & Tanujaya, B. (2017). Construction and reconstruction concept in mathematics instruction. Journal of Physics: Conference Series, 943(1), 012011. https://doi.org/10.1088/1742-6596/943/1/012011
Nagle, C., Moore-Russo, D., Viglietti, J., & Martin, K. (2013). Calculus students’ and instructors’conceptualizations of slope: A comparison across academic levels. International Journal of Science and Mathematics Education, 11(6), 1491-1515. https://doi.org/10.1007/s10763-013-9411-2
Oberle, D., Volz, R., Staab, S., & Motik, B. (2004). An extensible ontology software environment. In S. Staab & R. Studer (Eds.), Handbook on ontologies (pp. 299-319). Springer. https://doi.org/10.1007/978-3-540-24750-0_15
Österman, T., & Bråting, K. (2019). Dewey and mathematical practice: revisiting the distinction between procedural and conceptual knowledge. Journal of Curriculum Studies, 51(4), 457-470. https://doi.org/10.1080/00220272.2019.1594388
Polya, G. (1981). Mathematical Discovery on Understanding, Learning and Teaching Problem Solving, Volumes I and II. John Wiley & Sons.
Radmehr, F., & Drake, M. (2017). Revised Bloom's taxonomy and integral calculus: unpacking the knowledge dimension. International Journal of Mathematical Education in Science and Technology, 48(8), 1206-1224. https://doi.org/10.1080/0020739X.2017.1321796
Radmehr, F., & Drake, M. (2018). An assessment-based model for exploring the solving of mathematical problems: Utilizing revised bloom’s taxonomy and facets of metacognition. Studies in Educational Evaluation, 59, 41-51. https://doi.org/10.1016/j.stueduc.2018.02.004
Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1118-1134). Oxford University Press.
Sahin, Z., Yenmez, A. A., & Erbas, A. K. (2015). Relational understanding of the derivative concept through mathematical modeling: A case study. Eurasia Journal of Mathematics, Science and Technology Education, 11(1), 177-188. https://doi.org/10.12973/eurasia.2015.1149a
Setyawan, F., Prahmana, R. C. I., Istiandaru, A., & Hendroanto, A. (2017). Visualizer’s representation in functions. Journal of Physics: Conference Series, 943(1), 012004. https://doi.org/10.1088/1742-6596/943/1/012004
Tobin, P. (2012). Mathematics Standard Level: For Use with the International Baccalaureate Diploma Programme (IB Mathematics) (F. Cirrito, Ed.). IBID Press.
Tokgoz, E., & Gualpa, G. C. (2015). STEM majors’ cognitive calculus ability to sketch a function graph. In 2015 ASEE Annual Conference & Exposition, Seattle, Washington. https://doi.org/10.18260/p.24733
Usman, A. I. (2017). Geometric error analysis in applied calculus problem solving. European Journal of Science and Mathematics Education, 5(2), 119-133. https://doi.org/10.30935/scimath/9502
Wagner, J., & Sharp, J. (2017). A calculus activity with foundations in geometric learning. The Mathematics Teacher, 110(8), 618-623. https://doi.org/10.5951/mathteacher.110.8.0618
Widodo, S. A., Nayazik, A., & Prahmana, R. (2019). Formal student thinking in mathematical problem-solving. Journal of Physics: Conference Series, 1188(1), 012087. https://doi.org/10.1088/1742-6596/1188/1/012087