Main Article Content


This research aims to develop patterns of students' mathematical literacy processes based on the Cognitive Load Theory (MLCLT). Research using Design-Based Research (DBR) aims to design and develop learning components in the form of resulting learning patterns arranged in 4 stages. The research results show that a CLT-based mathematical literacy process domain pattern has been found. For the aspect of formulating situations mathematically, the pattern of mathematization was produced, and it resulted in some students having good communication skills. For the element of employing mathematical concepts, facts, procedures, and reasoning, the pattern of application was produced, and it showed an increase in students' literacy processes for indicators such as mathematizing, representation, reasoning, argument, devising strategies for solving problems, using symbolic, formal, and technical language and operations, as well as using mathematical tools. The pattern for the aspect of interpreting, applying, and evaluating mathematical outcomes is the reflection pattern. In this pattern, students are already accustomed to having indicators of mathematical literacy processes related to devising strategies for solving problems, using symbolic, formal, and technical language and operations, as well as using mathematical tools so that they can produce real solutions to real-world problems.


Cognitive load theory Design-based research Formulating situations Mathematical literacy Patterns

Article Details


  1. Afrilianto, M., Rosyana, T., Linda, L., & Wijaya, T. T. (2022). Project-activity-cooperative learning-exercise model in improving students' creative thinking ability in mathematics. Infinity Journal, 11(2), 285-296.

  2. Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research? Educational Researcher, 41(1), 16-25.

  3. Anggraeni, S. (2009). Pertanyaan yang dikembangkan guru di dalam RPP pada saat merencanakan open lesson. In International conference of Lesson Study FPMIPA-UPI (pp. 1-11).

  4. Armstrong, M., Dopp, C., & Welsh, J. (2020). Design-based research. The Students’ Guide to Learning Design and Research, 1-6.

  5. Asmara, A. S., Waluya, S. B., Suyitno, H., Junaedi, I., Suparman, T., & Prawiyogi, A. G. (2019). Development of mathematical literacy ability through the learning tools based CLT (cognitive load theory). Journal of Physics: Conference Series, 1321(2), 022109.

  6. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), Psychology of Learning and Motivation (Vol. 2, pp. 89-195). Academic Press.

  7. Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1-29.

  8. Bansilal, S., & Debba, R. (2012). Exploring the role of contextual attributes in a mathematical literacy assessment task. African Journal of Research in Mathematics, Science and Technology Education, 16(3), 302-316.

  9. Barab, S. (2014). Design-based research: A methodological toolkit for engineering change. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (2 ed., pp. 151-170). Cambridge University Press.

  10. Bernard, M., & Sunaryo, A. (2020). Analisis motivasi belajar siswa MTs dalam pembelajaran matematika materi segitiga dengan berbantuan media javascript geogebra [Analysis of MTs students' learning motivation in learning mathematics regarding triangles with the help of geogebra javascript media]. Jurnal Cendekia: Jurnal Pendidikan Matematika, 4(1), 134-143.

  11. Bowie, L., & Frith, V. (2006). Concerns about the South African mathematical literacy curriculum arising from experience of materials development. Pythagoras, 12(1), 29-36.

  12. Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53(3), 15-24.

  13. Colwell, J., & Enderson, M. C. (2016). “When I hear literacy”: Using pre-service teachers' perceptions of mathematical literacy to inform program changes in teacher education. Teaching and Teacher Education, 53, 63-74.

  14. Cooper, G. (1998). Research into cognitive load theory and instructional design at UNSW. Citeseer.

  15. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.

  16. Damayanti, F. (2013). Pembelajaran berbantuan multimedia berdasarkan teori beban kognitif untuk meningkatkan kemampuan menyelesaikan masalah program linear siswa X TKR 1 SMKN 1 Doko [Multimedia-assisted learning based on cognitive load theory to improve students' ability to solve linear programming problems X TKR 1 SMKN 1 Doko]. Jurnal Pendidikan Sains, 1(2), 133-140.

  17. de Jong, T. (2010). Cognitive load theory, educational research, and instructional design: some food for thought. Instructional Science, 38(2), 105-134.

  18. De Lange, J. (2003). Mathematics for literacy. Quantitative literacy: Why numeracy matters for schools and colleges, 80, 75-89.

  19. Edo, S. I., Putri, R. I. I., & Hartono, Y. (2013). Investigating secondary school students' difficulties in modeling problems PISA-model level 5 and 6. Indonesian Mathematical Society Journal on Mathematics Education, 4(1), 41-58.

  20. Fowler, S., Cutting, C., Fiedler, S. H. D., & Leonard, S. N. (2023). Design-based research in mathematics education: trends, challenges and potential. Mathematics Education Research Journal, 35(3), 635-658.

  21. Kamsurya, R., & Masnia, M. (2021). Desain pembelajaran dengan pendekatan matematika realistik menggunakan konteks permainan tradisional dengklaq untuk meningkatkan keterampilan numerasi siswa sekolah dasar [Learning design with a realistic mathematical approach using the context of the traditional game Dengklaq to improve elementary school students' numeracy skills]. Jurnal Ilmiah Mandala Education, 7(4), 67-73.

  22. Klančar, A., Starčič, A. I., Cotič, M., & Žakelj, A. (2021). Problem-based geometry in seventh grade: Examining the effect of path-based vs. conventional instruction on learning outcomes. International Journal of Emerging Technologies in Learning (Online), 16(12), 16-35.

  23. Laamena, C. M., & Laurens, T. (2021). Mathematical literacy ability and metacognitive characteristics of mathematics pre-service teacher. Infinity Journal, 10(2), 259-270.

  24. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.

  25. Mayer, R. E., & Moreno, R. (2010). Techniques that reduce extraneous cognitive load and manage intrinsic cognitive load during multimedia learning. In R. Brünken, R. Moreno, & J. L. Plass (Eds.), Cognitive Load Theory (pp. 131-152). Cambridge University Press. 10.1017/CBO9780511844744.009

  26. Minarni, A., & Napitupulu, E. E. (2020). The role of constructivism-based learning in improving mathematical high order thinking skills of indonesian students. Infinity Journal, 9(1), 111-132.

  27. Nasution, M. D., Ahmad, A., & Mohamed, Z. (2021). Pre service teachers’ perception on the implementation of project based learning in mathematic class. Infinity Journal, 10(1), 109-120.

  28. NCTM. (2000). Principles and standards for school mathematics. NCTM.

  29. Ni'mah, L., Junaedi, I., & Mariani, S. (2017). Mathematical literacy’s vocational students based on logical and numerical reasoning. Infinity Journal, 6(2), 95-110.

  30. Nuraida, E. M., & Putri, R. I. I. (2020). The context of archipelago traditional cake to explore students' understanding in integers division class VII. Jurnal Pendidikan Matematika, 14(1), 91-100.

  31. Nuryadi, N., & Khuzaini, N. (2017). Keefektifan media matematika virtual berbasis teams game tournament ditinjau dari cognitive load theory [The effectiveness of virtual mathematics media based on teams game tournaments in terms of cognitive load theory]. Jurnal Mercumatika: Jurnal Penelitian Matematika dan Pendidikan Matematika, 2(1), 57-68.

  32. OECD. (2017). PISA 2015 Results (Volume V).

  33. Paas, F., & Ayres, P. (2014). Cognitive load theory: A broader view on the role of memory in learning and education. Educational Psychology Review, 26(2), 191-195.

  34. Plass, J. L., Moreno, R., & Brünken, R. (2010). Cognitive load theory. Cambridge University Press.

  35. Plomp, T. (2013). Educational design research: An introduction. In T. Plomp & N. Nieveen (Eds.), Educational design research (pp. 10-51). SLO.

  36. Pradana, L., Sholikhah, O., Maharani, S., & Kholid, M. (2020). Virtual mathematics kits (VMK): Connecting digital media to mathematical literacy. International Journal of Emerging Technologies in Learning (iJET), 15(3), 234-241.

  37. Praekhaow, P., Chindanurak, T., Konglok, S. A., & Sokhuma, K. (2021). Studying conditions and problems for developing mathematics learning model of undergraduate students in Thailand. Infinity Journal, 10(1), 121-132.

  38. Prasetyaningtyas, F. D. (2019). Inovasi model quantum learning menggunakan teori apersepsi berbasis karakter untuk meningkatkan kualitas pembelajaran mata kuliah pendidikan IPS SD [The innovative quantum learning model uses character-based apperception theory to improve the quality of learning in elementary social studies education courses]. ELSE (Elementary School Education Journal): Jurnal Pendidikan Dan Pembelajaran Sekolah Dasar, 3(2), 1-6.

  39. Reeves, T. (2006). Design research from a technology perspective. In J. Van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 64-78). Routledge.

  40. Safiah, I., Yunus, M., Ahadin, A., Mislinawati, M., & Abdar, Y. (2023). OLMs development to improve students’ ability to produce learning media. International Journal of Emerging Technologies in Learning, 18(5).

  41. Sandoval, W. A., & Bell, P. (2004). Design-based research methods for studying learning in context: Introduction. Educational Psychologist, 39(4), 199-201.

  42. Stacey, K., & Turner, R. (2015). Assessing mathematical literacy: The PISA experience. Springer Cham.

  43. Sunita, N. W., & Nardus, E. O. (2018). Pengaruh penerapan strategi apersepsi scene setting terhadap pemahaman konsep matematika dengan mengontrol motivasi berprestasi [The effect of applying the scene setting apperception strategy on understanding mathematical concepts by controlling achievement motivation]. Emasains: Jurnal Edukasi Matematika dan Sains, 7(1), 29-37.

  44. Sweller, J. (2018). Measuring cognitive load. Perspectives on Medical Education, 7(1), 1-2.

  45. Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), 185-233.

  46. Tamur, M., Ndiung, S., Weinhandl, R., Wijaya, T. T., Jehadus, E., & Sennen, E. (2023). Meta-analysis of computer-based mathematics learning in the last decade scopus database: Trends and implications. Infinity Journal, 12(1), 101-116.

  47. Turiman, P., Omar, J., Daud, A. M., & Osman, K. (2012). Fostering the 21st century skills through scientific literacy and science process skills. Procedia - Social and Behavioral Sciences, 59, 110-116.

  48. Umbara, U., & Nuraeni, Z. (2019). Implementation of realistic mathematics education based on adobe flash professional CS6 to improve mathematical literacy. Infinity Journal, 8(2), 167-178.

  49. van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147-177.

  50. Wantika, R. R. (2017). Pembelajaran kooperatif tipe TAI berdasarkan teori beban kognitif [TAI type cooperative learning based on cognitive load theory]. Buana Pendidikan: Jurnal Fakultas Keguruan dan Ilmu Pendidikan Unipa Surabaya, 13(23), 41-46.

  51. Wardono, W., Waluya, S. B., Mariani, S., & Candra D, S. (2016). Mathematics literacy on problem based learning with Indonesian realistic mathematics education approach assisted e-learning edmodo. Journal of Physics: Conference Series, 693(1), 012014.

  52. Zetriuslita, Z., Nofriyandi, N., & Istikomah, E. (2020). The effect of geogebra-assisted direct instruction on students' self-efficacy and self-regulation. Infinity Journal, 9(1), 41-48.

  53. Zetriuslita, Z., Nofriyandi, N., & Istikomah, E. (2021). The increasing self-efficacy and self-regulated through geogebra based teaching reviewed from initial mathematical ability (IMA) level. International Journal of Instruction, 14(1), 587-598.

  54. Zulkarnain, Z. (2013). The effect of using sentence of question in the beginning of mathematics lesson in primary school. Asian Social Science, 9(12), 195-204.