Main Article Content


This research develops learning media with a Science, Technology, Engineering, Art, Mathematics (STEAM) approach based on Augmented Reality (AR) to improve students' mathematical problem-solving abilities on geometric concepts. This method uses design-based research (DBR). The development stages consist of needs assessment and literature review, design and development, user testing to analyze user responses and evaluation and examination of the media devices being developed. The research subjects for expert tests included media experts and education experts, practicality tests for teachers, response tests for ten high school students, and examination stage tests for 30 high schools in Indonesia. The instruments used were media expert questionnaires, education expert questionnaires, practicality questionnaires, and tests. The media developed is called Augmented Reality Mathematics (ARM). The results of this research are 1) ARM media expert test in the very good category, 2) ARM educational media expert test in the very good category, 3) ARM media practicality test in the good category, 4) responses from students who use ARM media in the very good category, and 5) ARM media can improve mathematical problem-solving abilities in the moderate category. The findings of this research are that AR media is effectively used to improve students' problem-solving abilities in medium-category geometry concepts using the STEAM approach. This research concludes that using ARM media with STEAM learning can improve problem-solving abilities in geometric concepts.


Augmented reality Geometry Problem-solving STEAM

Article Details


  1. Abdullah, A. H., Julius, E., Suhairom, N., Ali, M., Abdul Talib, C., Mohamad Ashari, Z., Abdul Kohar, U. H., & Abd Rahman, S. N. S. (2022). Relationship between self-concept, emotional intelligence and problem-solving skills on secondary school students' attitude towards solving algebraic problems. Sustainability, 14(21), 14402.

  2. Aisyah, N., Susanti, E., Meryansumayeka, M., Siswono, T. Y. E., & Maat, S. M. (2023). Proving geometry theorems: Student prospective teachers’ perseverance and mathematical reasoning. Infinity Journal, 12(2), 377-392.

  3. Arifin, A. M., Pujiastuti, H., & Sudiana, R. (2020). Pengembangan media pembelajaran STEM dengan augmented reality untuk meningkatkan kemampuan spasial matematis siswa [Development of STEM learning media with augmented reality to improve students' mathematical spatial abilities]. Jurnal Riset Pendidikan Matematika, 7(1), 59-73.

  4. Bedewy, S. E., Choi, K., Lavicza, Z., Fenyvesi, K., & Houghton, T. (2021). STEAM practices to explore ancient architectures using augmented reality and 3D printing with geogebra. Open Education Studies, 3(1), 176-187.

  5. Bedewy, S. E., Lavicza, Z., Haas, B., & Lieban, D. (2022). A STEAM practice approach to integrate architecture, culture and history to facilitate mathematical problem-solving. Education Sciences, 12(1), 9.

  6. Belbase, S., Mainali, B. R., Kasemsukpipat, W., Tairab, H., Gochoo, M., & Jarrah, A. (2022). At the dawn of science, technology, engineering, arts, and mathematics (STEAM) education: prospects, priorities, processes, and problems. International Journal of Mathematical Education in Science and Technology, 53(11), 2919-2955.

  7. Belda-Medina, J., & Calvo-Ferrer, J. R. (2022). Integrating augmented reality in language learning: pre-service teachers’ digital competence and attitudes through the TPACK framework. Education and Information Technologies, 27(9), 12123-12146.

  8. Boaler, J., Brown, K., LaMar, T., Leshin, M., & Selbach-Allen, M. (2022). Infusing mindset through mathematical problem solving and collaboration: Studying the impact of a short college intervention. Education Sciences, 12(10), 694.

  9. Castaño-Calle, R., Jiménez-Vivas, A., Poy Castro, R., Calvo Álvarez, M. I., & Jenaro, C. (2022). Perceived benefits of future teachers on the usefulness of virtual and augmented reality in the teaching-learning process. Education Sciences, 12(12), 855.

  10. Cevahir, H. Ö., Muzaffer Baturay, Meltem Huri. (2022). The Effect of Animation-Based Worked Examples Supported with Augmented Reality on the Academic Achievement, Attitude and Motivation of Students towards Learning Programming. Participatory Educational Research, 9(3), 226-247.

  11. Chiu, T. K. F., & Churchill, D. (2015). Exploring the characteristics of an optimal design of digital materials for concept learning in mathematics: Multimedia learning and variation theory. Computers & Education, 82, 280-291.

  12. del Cerro Velázquez, F., & Morales Méndez, G. (2021). Systematic review of the development of spatial intelligence through augmented reality in STEM knowledge areas. Mathematics, 9(23), 3067.

  13. del Olmo-Muñoz, J., González-Calero, J. A., Diago, P. D., Arnau, D., & Arevalillo-Herráez, M. (2023). Intelligent tutoring systems for word problem solving in COVID-19 days: could they have been (part of) the solution? ZDM – Mathematics Education, 55(1), 35-48.

  14. Diego-Mantecon, J.-M., Prodromou, T., Lavicza, Z., Blanco, T. F., & Ortiz-Laso, Z. (2021). An attempt to evaluate STEAM project-based instruction from a school mathematics perspective. ZDM – Mathematics Education, 53(5), 1137-1148.

  15. Elsayed, S. A., & Al-Najrani, H. I. (2021). Effectiveness of the augmented reality on improving the visual thinking in mathematics and academic motivation for middle school students. Eurasia Journal of Mathematics, Science and Technology Education, 17(8), em1991.

  16. Fox, J., & Cavner, D. (2015). 21st-century teaching and learning in Ethiopia: Challenges and hindrances. The International Journal of Pedagogy and Curriculum, 22(2), 25-38.

  17. Fransiska, E. D., & Akhriza, T. M. (2017). Implementasi teknologi augmented reality sebagai media pembelajaran informatif dan interaktif untuk pengenalan hewan. In Seminar Nasional Sistem Informasi (SENASIF) (pp. 636-645).

  18. Hake, R. R. (2002). Relationship of individual student normalized learning gains in mechanics with gender, high-school physics, and pretest scores on mathematics and spatial visualization. In Physics education research conference (pp. 1-14).

  19. Hanid, M. F. A., Said, M. N. H. M., Yahaya, N., & Abdullah, Z. (2022). Effects of augmented reality application integration with computational thinking in geometry topics. Education and Information Technologies, 27(7), 9485-9521.

  20. Hebebci, M. T., & Usta, E. (2022). The effects of integrated STEM education practices on problem solving skills, scientific creativity, and critical thinking dispositions. Participatory Educational Research, 9(6), 358-379.

  21. Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123.

  22. Jabar, J. M., Hidayat, R., Samat, N. A., Rohizan, M. F. H., Salim, N., & Norazhar, S. A. (2022). Augmented reality learning in mathematics education: A systematic literature review. Journal of Higher Education Theory and Practice, 22(15), 183-202.

  23. Jantassova, D., Churchill, D., Shebalina, O., & Akhmetova, D. (2022). Capacity building for engineering training and technology via STEAM education. Education Sciences, 12(11), 737.

  24. Jesionkowska, J., Wild, F., & Deval, Y. (2020). Active learning augmented reality for STEAM education—A case study. Education Sciences, 10(8), 198.

  25. Katz-Buonincontro, J. (2018). Gathering STE(A)M: Policy, curricular, and programmatic developments in arts-based science, technology, engineering, and mathematics education - Introduction to the special issue of Arts Education Policy Review: STEAM Focus. Arts Education Policy Review, 119(2), 73-76.

  26. Kaur, D. P., Kumar, A., Dutta, R., & Malhotra, S. (2022). The role of interactive and immersive technologies in higher education: A survey. Journal of Engineering Education Transformations, 36(2), 79-86.

  27. Kholid, M. N., Swastika, A., Ishartono, N., Nurcahyo, A., Lam, T. T., Maharani, S., Ikram, M., Murniasih, T. R., Majid, M., & Wijaya, A. P. (2022). Hierarchy of students’ reflective thinking levels in mathematical problem solving. Acta Scientiae, 24(6), 24-59.

  28. Kohen, Z., & Nitzan-Tamar, O. (2022). Contextual mathematical modelling: Problem-solving characterization and feasibility. Education Sciences, 12(7), 454.

  29. Körtesi, P., Simonka, Z., Szabo, Z. K., Guncaga, J., & Neag, R. (2022). Challenging examples of the wise use of computer tools for the sustainability of knowledge and developing active and innovative methods in STEAM and mathematics education. Sustainability, 14(20), 12991.

  30. Lampropoulos, G., Keramopoulos, E., Diamantaras, K., & Evangelidis, G. (2022). Augmented reality and virtual reality in education: Public perspectives, sentiments, attitudes, and discourses. Education Sciences, 12(11), 798.

  31. Lavicza, Z., Weinhandl, R., Prodromou, T., Anđić, B., Lieban, D., Hohenwarter, M., Fenyvesi, K., Brownell, C., & Diego-Mantecón, J. M. (2022). Developing and evaluating educational innovations for STEAM education in rapidly changing digital technology environments. Sustainability, 14(12), 7237.

  32. Li, S., Shen, Y., Jiao, X., & Cai, S. (2022). Using augmented reality to enhance students' representational fluency: The case of linear functions. Mathematics, 10(10), 1718.

  33. Meryansumayeka, M., Zulkardi, Z., Putri, R. I. I., & Hiltrimartin, C. (2022). Designing geometrical learning activities assisted with ICT media for supporting students’ higher order thinking skills. Journal on Mathematics Education, 13(1), 135-148.

  34. Naidoo, J., & Kapofu, W. (2020). Exploring female learners’ perceptions of learning geometry in mathematics. South African Journal of Education, 40(1), 1-11.

  35. Noor, S. (2020). Penggunaan quizizz dalam penilaian pembelajaran pada materi ruang lingkup biologi untuk meningkatkan hasil belajar siswa kelas X. 6 SMAN 7 Banjarmasin [The use of quizizz in assessing learning on biology scope material to improve the learning outcomes of class X. 6 students at SMAN 7 Banjarmasin]. Jurnal Pendidikan Hayati, 6(1), 1-7.

  36. Nuriyah, D., Sutarto, S., & Prihatin, J. (2020). The development of environmental change textbook based on STEM-Cp to improve problem-solving skills in high school biology learning. Journal of Physics: Conference Series, 1563(1), 012054.

  37. Ouyang, F., Chen, Z., Cheng, M., Tang, Z., & Su, C.-Y. (2021). Exploring the effect of three scaffoldings on the collaborative problem-solving processes in China’s higher education. International Journal of Educational Technology in Higher Education, 18(1), 35.

  38. Özreçberoğlu, N., & Çağanağa, Ç. K. (2018). Making it count: Strategies for improving problem-solving skills in mathematics for students and teachers’ classroom management. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1253-1261.

  39. Pertiwi, C. M., Rohaeti, E. E., & Hidayat, W. (2021). The students' mathematical problem-solving abilities, self-regulated learning, and VBA microsoft word in new normal: A development of teaching materials. Infinity Journal, 10(1), 17-30.

  40. Primayana, K. H. (2020). Menciptakan pembelajaran berbasis pemecahan masalah dengan berorientasi pembentukan karakter untuk mencapai tujuan higher order thinking skilss (HOTS) pada anak sekolah dasar [Creating problem-solving-based learning with a character-building orientation to achieve the goal of higher-order thinking skills (HOTS) in elementary school children]. Purwadita: Jurnal Agama dan Budaya, 3(2), 85-92.

  41. Puig, A., Rodríguez, I., Baldeón, J., & Múria, S. (2022). Children building and having fun while they learn geometry. Computer Applications in Engineering Education, 30(3), 741-758.

  42. Putra, E. A., Sudiana, R., & Pamungkas, A. S. (2020). Pengembangan smartphone learning management system (S-LMS) sebagai media pembelajaran matematika di SMA [Development of a smartphone learning management system (S-LMS) as a mathematics learning medium in high school]. Kreano, Jurnal Matematika Kreatif-Inovatif, 11(1), 36-45.

  43. Rahman, N. A., Rosli, R., Rambely, A. S., Siregar, N. C., Capraro, M. M., & Capraro, R. M. (2022). Secondary school teachers' perceptions of STEM pedagogical content knowledge. Journal on Mathematics Education, 13(1), 119-134.

  44. Rahmawati, Y., Ramadhani, S. F., & Afrizal, A. (2020). Developing students' critical thinking: A STEAM project for chemistry learning. Universal Journal of Educational Research, 8(1), 72-82.

  45. Ramli, S. S., Maaruf, S. Z., Mohamad, S. N. A., Abdullah, N., Shamsudin, N. M., & Aris, S. R. S. (2022). STEAM-ing: Preliminary insights in consolidating arts with STEM. Asian Journal of University Education, 18(1), 152-165.

  46. Rezapour Nasrabad, R. (2017). Criteria of validity and reliability in qualitative research. Journal of qualitative research in health sciences, 6(4), 493-499.

  47. Rukayah, R., Daryanto, J., Atmojo, I. R. W., Ardiansyah, R., Saputri, D. Y., & Salimi, M. (2022). Augmented Reality Media Development in STEAM Learning in Elementary Schools. Ingenierie des Systemes d'Information, 27(3), 463-471.

  48. Sari, U., Çelik, H., Pektaş, H. M., & Yalçın, S. (2022). Effects of STEM-focused Arduino practical activities on problem-solving and entrepreneurship skills. Australasian Journal of Educational Technology, 38(3), 140-154.

  49. Sarkar, P., Kadam, K., & Pillai, J. S. (2020). Learners' approaches, motivation and patterns of problem-solving on lines and angles in geometry using augmented reality. Smart Learning Environments, 7(1), 17.

  50. Setyarto, A., Murtiyasa, B., & Sumardi, S. (2020). Development of 21st century skills in mathematics learning with steam in mts negeri 2 wonogiri. Universal Journal of Educational Research, 8(11), 5513-5528.

  51. Sigit, D. V., Ristanto, R. H., & Mufida, S. N. (2022). Integration of project-based e-learning with STEAM: An innovative solution to learn ecological concept. International Journal of Instruction, 15(3), 23-40.

  52. Siskawati, E., Zaenuri, Z., Waluya, S. B., & Junaedi, I. (2022). Mathematical error patterns to facilitate solving math problems for junior high school students. Journal of Higher Education Theory & Practice, 22(9), 112-117.

  53. Sukirman, D., & Setiawan, B. (2022). Designing multimedia development for English language learning: Resources of effective instructional process. World Journal on Educational Technology: Current Issues, 14(4), 1077–1093.

  54. Sun, Z., Xie, K., & Anderman, L. H. (2018). The role of self-regulated learning in students' success in flipped undergraduate math courses. The Internet and Higher Education, 36, 41-53.

  55. Sutama, S., Fuadi, D., Narimo, S., Hafida, S. H. N., Novitasari, M., Anif, S., Prayitno, H. J., Sunanih, S., & Adnan, M. (2022). Collaborative mathematics learning management: Critical thinking skills in problem solving. International Journal of Evaluation and Research in Education (IJERE), 11(3), 1015-1027.

  56. Sutama, S., Prayitno, H. J., Ishartono, N., & Sari, D. P. (2020). Development of mathematics learning process by using flipped classroom integrated by STEAM Education in senior high school. Universal Journal of Educational Research, 8(8), 3690-3697.

  57. Syamsuddin, A., Juniati, D., & Siswono, T. Y. E. (2020). Understanding the problem solving strategy based on cognitive style as a tool to investigate reflective thinking process of prospective teacher. Universal Journal of Educational Research, 8(6), 2614-2620.

  58. Walida, S. E., Sa'dijah, C., Subanji, S., & Sisworo, S. (2022). A portrait of controversial mathematics problems and students' metacognitive awareness: A case of Indonesia. Journal of Higher Education Theory and Practice, 22(12), 51-62.

  59. Yun, S. T., Olsen, S. K., Quigley, K. C., Cannady, M. A., & Hartry, A. (2023). A review of augmented reality for informal science learning: Supporting design of intergenerational group learning. Visitor Studies, 26(1), 1-23.

  60. Zhou, Q., Jiang, J., Li, X. F., Hou, H. M., & Yue, S. Q. (2022). Designing an intelligent firefighting toy car using AR technology and STEAM. Mobile Information Systems, 2022, 2599715.

  61. Zuo, R., Talib, O., Burhanuddin, N. A. N., Li, W., & Liu, X. (2023). An empirical study of virtual reality–based learning approaches to promote motivation and mathematical achievement in mathematic. The International Journal of Science, Mathematics and Technology Learning, 31(1), 37-53.