Main Article Content


Constructing proofs for the limit using the formal definition induces a high cognitive load. Common assessment tools, like cognitive load scales, lack specificity for the concept of limits. This research aims to validate an instrument tailored to assess cognitive load in students focused on the formal definition of limits, addressing the need for diverse strategies in education. The research employs a quantitative survey design with a Rasch model approach, utilizing a data collection instrument in the form of a questionnaire. Subsequently, the data are analyzed by focusing on three aspects: (1) item fit to the Rasch model, (2) unidimensionality, and (3) rating scale. A total of 315 students from three private universities in Banten participated as research respondents. The findings of this study affirm the validity of the cognitive load scale centered on the formal definition of limit, meeting the stringent standards set by Rasch modeling. Additionally, the results of the study provide evidence of the scale’s adherence to the monotonic principle of the Rasch model. These outcomes contribute to a comprehensive understanding of cognitive load in the context of learning formal definition of limit, providing a solid foundation for instructional design and assessment strategies.


Cognitive load scale Formal definition of limit Item analysis Rasch model Unidimensionality

Article Details


  1. Adiredja, A. P. (2021). Students’ struggles with temporal order in the limit definition: uncovering resources using knowledge in pieces. International Journal of Mathematical Education in Science and Technology, 52(9), 1295-1321.

  2. Aghekyan, R. (2020). Validation of the SIEVEA instrument using the rasch analysis. International Journal of Educational Research, 103, 101619.

  3. Al Ali, R., & Shehab, R. T. (2020). Psychometric properties of social perception of mathematics: Rasch model analysis. International Education Studies, 13(12), 102-110.

  4. Alam, A. (2020). Challenges and possibilities in teaching and learning of calculus: A case study of India. Journal for the Education of Gifted Young Scientists, 8(1), 407-433.

  5. Andrich, D. (2013). An expanded derivation of the threshold structure of the polytomous rasch model that dispels any “threshold disorder controversy”. Educational and Psychological Measurement, 73(1), 78-124.

  6. Andrich, D., & Pedler, P. (2019). A law of ordinal random error: The rasch measurement model and random error distributions of ordinal assessments. Measurement, 131, 771-781.

  7. Anmarkrud, Ø., Andresen, A., & Bråten, I. (2019). Cognitive load and working memory in multimedia learning: conceptual and measurement issues. Educational Psychologist, 54(2), 61-83.

  8. Arzarello, F., & Soldano, C. (2019). Approaching proof in the classroom through the logic of inquiry. In G. Kaiser & N. Presmeg (Eds.), Compendium for Early Career Researchers in Mathematics Education (pp. 221-243). Springer International Publishing.

  9. Bishara, S. (2022). Linking cognitive load, mindfulness, and self-efficacy in college students with and without learning disabilities. European Journal of Special Needs Education, 37(3), 494-510.

  10. Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences. Psychology Press.

  11. Boone, W. J., & Staver, J. R. (2020). Understanding and utilizing item characteristic curves (ICC) to further evaluate the functioning of a scale. In W. J. Boone & J. R. Staver (Eds.), Advances in Rasch Analyses in the Human Sciences (pp. 65-83). Springer International Publishing.

  12. Breves, P., & Stein, J.-P. (2023). Cognitive load in immersive media settings: the role of spatial presence and cybersickness. Virtual Reality, 27(2), 1077-1089.

  13. Brown, J. R. (2022). Rigour and thought experiments: Burgess and norton. Axiomathes, 32(1), 7-28.

  14. Brzezińska, J. (2020). Item response theory models in the measurement theory. Communications in Statistics - Simulation and Computation, 49(12), 3299-3313.

  15. Can, Y. S., Arnrich, B., & Ersoy, C. (2019). Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Journal of Biomedical Informatics, 92, 103139.

  16. Casale, G., Herzog, M., & Volpe, R. J. (2023). Measurement efficiency of a teacher rating scale to screen for students at risk for social, emotional, and behavioral problems. Journal of Intelligence, 11(3), 57.

  17. Case, J., & Speer, N. (2021). Calculus students’ deductive reasoning and strategies when working with abstract propositions and calculus theorems. PRIMUS, 31(2), 184-201.

  18. Chan, S.-W., Looi, C.-K., & Sumintono, B. (2021). Assessing computational thinking abilities among Singapore secondary students: a rasch model measurement analysis. Journal of Computers in Education, 8(2), 213-236.

  19. Chen, C., Kang, J. M., Sonnert, G., & Sadler, P. M. (2021). High school calculus and computer science course taking as predictors of success in introductory college computer science. ACM Trans. Comput. Educ., 21(1), Article 6.

  20. Chew, S. L., & Cerbin, W. J. (2021). The cognitive challenges of effective teaching. The Journal of Economic Education, 52(1), 17-40.

  21. Chi, S., Liu, X., & Wang, Z. (2021). Comparing student science performance between hands-on and traditional item types: A many-facet Rasch analysis. Studies in Educational Evaluation, 70, 100998.

  22. Chi, S., Wang, Z., & Zhu, Y. (2023). Using rasch analysis to assess students’ learning progression in stability and change across middle school grades. In X. Liu & W. J. Boone (Eds.), Advances in Applications of Rasch Measurement in Science Education (pp. 265-289). Springer International Publishing.

  23. Chung, S., & Cai, L. (2021). Cross-classified random effects modeling for moderated item calibration. Journal of Educational and Behavioral Statistics, 46(6), 651-681.

  24. De Ayala, R. J. (2018). Item response theory and Rasch modeling. In G. R. Hancock, L. M. Stapleton, & R. O. Mueller (Eds.), The reviewer’s guide to quantitative methods in the social sciences (2nd ed., pp. 145-163). Routledge.

  25. Eckes, T., & Jin, K.-Y. (2021). Measuring rater centrality effects in writing assessment: A bayesian facets modeling approach. Psychological Test and Assessment Modeling, 63(1), 65-94.

  26. Falotico, R., & Quatto, P. (2015). Fleiss’ kappa statistic without paradoxes. Quality & Quantity, 49(2), 463-470.

  27. Faradillah, A., & Febriani, L. (2021). Mathematical trauma students' junior high school based on grade and gender. Infinity Journal, 10(1), 53-68.

  28. Fennell, F., & Rowan, T. (2001). Representation: An important process for teaching and learning mathematics. Teaching Children Mathematics, 7(5), 288-292.

  29. Forsberg, A., Adams, E. J., & Cowan, N. (2021). Chapter one - The role of working memory in long-term learning: Implications for childhood development. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (Vol. 74, pp. 1-45). Academic Press.

  30. Ghedamsi, I., & Lecorre, T. (2021). Transition from high school to university calculus: a study of connection. ZDM – Mathematics Education, 53(3), 563-575.

  31. Gupta, U., & Zheng, R. Z. (2020). Cognitive load in solving mathematics problems: Validating the role of motivation and the interaction among prior knowledge, worked examples, and task difficulty. European Journal of STEM Education, 5(1), 5.

  32. Gwet, K. L. (2021). Large-sample variance of fleiss generalized kappa. Educational and Psychological Measurement, 81(4), 781-790.

  33. Hadie, S. N. H., & Yusoff, M. S. B. (2016). Assessing the validity of the cognitive load scale in a problem-based learning setting. Journal of Taibah University Medical Sciences, 11(3), 194-202.

  34. Hadžibajramović, E., Schaufeli, W., & De Witte, H. (2020). A rasch analysis of the burnout assessment Tool (BAT). PLoS One, 15(11), e0242241.

  35. Hagell, P. (2019). Measuring activities of daily living in Parkinson’s disease: On a road to nowhere and back again? Measurement, 132, 109-124.

  36. Ho, S. Y., Phua, K., Wong, L., & Goh, W. W. B. (2020). Extensions of the external validation for checking learned model interpretability and generalizability. Patterns, 1(8).

  37. Hoijtink, H. (2005). Item response models for nonmonotone items. In K. Kempf-Leonard (Ed.), Encyclopedia of Social Measurement (pp. 373-378). Elsevier.

  38. Huckaby, L. V., Cyr, A. R., Handzel, R. M., Littleton, E. B., Crist, L. R., Luketich, J. D., Lee, K. K., & Dhupar, R. (2022). Postprocedural cognitive load measurement with immediate feedback to guide curriculum development. The Annals of Thoracic Surgery, 113(4), 1370-1377.

  39. Indihadi, D., Suryana, D., & Ahmad, A. B. (2022). The analysis of construct validity of Indonesian creativity scale using rasch model. Creativity Studies, 15(2), 560–576.

  40. Jablonka, E. (2020). Critical thinking in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 159-163). Springer International Publishing.

  41. Jiang, D., & Kalyuga, S. (2020). Confirmatory factor analysis of cognitive load ratings supports a two-factor model. The Quantitative Methods for Psychology, 16(3), 216-225.

  42. Johnson, J. L., Adkins, D., & Chauvin, S. (2020). A review of the quality indicators of rigor in qualitative research. American Journal of Pharmaceutical Education, 84(1), 7120.

  43. Josa, I., & Aguado, A. (2020). Measuring unidimensional inequality: Practical framework for the choice of an appropriate measure. Social Indicators Research, 149(2), 541-570.

  44. Katona, J. (2022). Measuring cognition load using eye-tracking parameters based on algorithm description tools. Sensors, 22(3), 912.

  45. Kidron, I. (2020). Calculus teaching and learning. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 87-94). Springer International Publishing.

  46. Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in psychology, 8, 1997.

  47. Klepsch, M., & Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Instructional Science, 48(1), 45-77.

  48. Koskey, K. L., Mudrey, R. R., & Ahmed, W. (2017). Rasch derived teachers' emotions questionnaire. Journal of Applied Measurement, 18(1), 67-86.

  49. Krieglstein, F., Beege, M., Rey, G. D., Sanchez-Stockhammer, C., & Schneider, S. (2023). Development and validation of a theory-based questionnaire to measure different types of cognitive load. Educational Psychology Review, 35(1), 9.

  50. Lakens, D. (2022). Sample size justification. Collabra: Psychology, 8(1), 33267.

  51. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.

  52. Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45(4), 1058-1072.

  53. Ludyga, S., Gerber, M., & Kamijo, K. (2022). Exercise types and working memory components during development. Trends in Cognitive Sciences, 26(3), 191-203.

  54. Mangaroska, K., Sharma, K., Gašević, D., & Giannakos, M. (2022). Exploring students' cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity. Journal of Computer Assisted Learning, 38(1), 40-59.

  55. Martínez-Planell, R., & Trigueros, M. (2021). Multivariable calculus results in different countries. ZDM – Mathematics Education, 53(3), 695-707.

  56. Mutiawani, V., Athaya, A. M., Saputra, K., & Subianto, M. (2022). Implementing item response theory (IRT) method in quiz assessment system. TEM Journal, 11(1), 210-218.

  57. Naar, S., Chapman, J., Cunningham, P. B., Ellis, D., MacDonell, K., & Todd, L. (2021). Development of the motivational interviewing coach rating scale (MI-CRS) for health equity implementation contexts. Health Psychology, 40(7), 439-449.

  58. Nima, A. A., Cloninger, K. M., Persson, B. N., Sikström, S., & Garcia, D. (2020). Validation of subjective well-being measures using item response theory. Frontiers in psychology, 10, 3036.

  59. Oktaviyanthi, R., & Agus, R. N. (2023). Evaluating graphing quadratic worksheet on visual thinking classification: A confirmatory analysis. Infinity Journal, 12(2), 207-224.

  60. Oktaviyanthi, R., Herman, T., & Dahlan, J. A. (2018). How does pre-service mathematics teacher prove the limit of a function by formal definition? Journal on Mathematics Education, 9(2), 195-212.

  61. Ouwehand, K., Kroef, A. v. d., Wong, J., & Paas, F. (2021). Measuring cognitive load: Are there more valid alternatives to Likert rating scales? Frontiers in Education, 6, 702616.

  62. Parr, E. D. (2023). Undergraduate students’ interpretations of expressions from calculus statements within the graphical register. Mathematical thinking and learning, 25(2), 177-207.

  63. Pradipta, T. R., Perbowo, K. S., Nafis, A., Miatun, A., & Johnston-Wilder, S. (2021). Marginal region mathematics teachers' perception of using ict media. Infinity Journal, 10(1), 133-148.

  64. Qu, Y., Kne, L., Graham, S., Watkins, E., & Morris, K. (2023). A latent scale model to minimize subjectivity in the analysis of visual rating data for the National Turfgrass Evaluation Program. Frontiers in Plant Science, 14.

  65. Quarfoot, D., & Rabin, J. M. (2022). A hypothesis framework for students’ difficulties with proof by contradiction. International Journal of Research in Undergraduate Mathematics Education, 8(3), 490-520.

  66. Quintão, C., Andrade, P., & Almeida, F. (2020). How to improve the validity and reliability of a case study approach? Journal of Interdisciplinary Studies in Education, 9(2), 264-275.

  67. Ramakrishnan, P., Balasingam, B., & Biondi, F. (2021). Chapter 2 - cognitive load estimation for adaptive human–machine system automation. In D. Zhang & B. Wei (Eds.), Learning Control (pp. 35-58). Elsevier.

  68. Ramesh, D., & Sanampudi, S. K. (2022). An automated essay scoring systems: a systematic literature review. Artificial Intelligence Review, 55(3), 2495-2527.

  69. Sepp, S., Howard, S. J., Tindall-Ford, S., Agostinho, S., & Paas, F. (2019). Cognitive load theory and human movement: Towards an integrated model of working memory. Educational Psychology Review, 31(2), 293-317.

  70. Shi, Q., Wind, S. A., & Lakin, J. M. (2023). Exploring the influence of item characteristics in a spatial reasoning task. Journal of Intelligence, 11(8), 152.

  71. Silvia, P. J., Rodriguez, R. M., Beaty, R. E., Frith, E., Kaufman, J. C., Loprinzi, P., & Reiter-Palmon, R. (2021). Measuring everyday creativity: A rasch model analysis of the biographical inventory of creative behaviors (BICB) scale. Thinking Skills and Creativity, 39, 100797.

  72. Skulmowski, A. (2023). Guidelines for choosing cognitive load measures in perceptually rich environments. Mind, Brain, and Education, 17(1), 20-28.

  73. Skulmowski, A., & Xu, K. M. (2022). Understanding cognitive load in digital and online learning: A new perspective on extraneous cognitive load. Educational Psychology Review, 34(1), 171-196.

  74. Slavíčková, M., & Vargová, M. (2023). Differences in the comprehension of the limit concept between prospective mathematics teachers and managerial mathematicians during online teaching. In 4th International Conference, Higher Education Learning Methodologies and Technologies Online (pp. 168-183). Cham

  75. Stenner, A. J., Fisher, W. P., Stone, M. H., & Burdick, D. (2023). Causal rasch models. In W. P. Fisher Jr & P. J. Massengill (Eds.), Explanatory models, unit standards, and personalized learning in educational measurement (pp. 223-250). Springer Nature Singapore.

  76. Swain, T. A., Snyder, S. W., McGwin, G., Huisingh, C. E., Seder, T., & Owsley, C. (2023). Older drivers’ attitudes and preferences about instrument cluster designs in vehicles revealed by the dashboard questionnaire. Cognition, Technology & Work, 25(1), 65-74.

  77. Sweller, J. (2011). Chapter two - Cognitive load theory. In J. P. Mestre & B. H. Ross (Eds.), Psychology of learning and motivation (Vol. 55, pp. 37-76). Academic Press.

  78. Szulewski, A., Howes, D., van Merriënboer, J. J. G., & Sweller, J. (2021). From theory to practice: The application of cognitive load theory to the practice of medicine. Academic Medicine, 96(1), 24-30.

  79. Tesio, L., Caronni, A., Kumbhare, D., & Scarano, S. (2023). Interpreting results from rasch analysis 1. The “most likely” measures coming from the model. Disability and Rehabilitation, 1-13.

  80. Thompson, P. W., & Harel, G. (2021). Ideas foundational to calculus learning and their links to students’ difficulties. ZDM – Mathematics Education, 53(3), 507-519.

  81. Toland, M. D., Li, C., Kodet, J., & Reese, R. J. (2021). Psychometric properties of the outcome rating scale: An item response theory analysis. Measurement and Evaluation in Counseling and Development, 54(2), 90-105.

  82. Viirman, O., Vivier, L., & Monaghan, J. (2022). The limit notion at three educational levels in three countries. International Journal of Research in Undergraduate Mathematics Education, 8(2), 222-244.

  83. Wang, M.-T., Degol, J. L., Amemiya, J., Parr, A., & Guo, J. (2020). Classroom climate and children’s academic and psychological wellbeing: A systematic review and meta-analysis. Developmental Review, 57, 100912.

  84. Wu, M., Tam, H. P., & Jen, T.-H. (2016). Two-parameter IRT models. In M. Wu, H. P. Tam, & T.-H. Jen (Eds.), Educational measurement for applied researchers: Theory into practice (pp. 187-205). Springer Singapore.

  85. Yamashita, T. (2022). Analyzing likert scale surveys with rasch models. Research Methods in Applied Linguistics, 1(3), 100022.

  86. Yan, X., Marmur, O., & Zazkis, R. (2020). Calculus for teachers: Perspectives and considerations of mathematicians. Canadian Journal of Science, Mathematics and Technology Education, 20(2), 355-374.