Main Article Content
Abstract
This research investigates the mathematical concepts embedded within Batik Truntum motifs, including geometry, analysis, arithmetic, and algebra. Employing a qualitative methodology with an ethnographic approach, the study addresses four critical questions: "Where should I begin the search?", "How do I locate the concepts?", "How do I identify significant findings?", and "How do I comprehend these findings?". Through addressing these questions, the researcher successfully analyzed the mathematical concepts inherent in Batik Truntum. Of the four primary mathematical concepts, only geometry was substantiated by experts, encompassing sub-concepts such as geometric transformations, line relationships, and planar geometry. Specifically, transformation geometry includes translation and reflection, while the study of line relationships involves line alignment, and planar geometry covers the topic of circles. This research aims to ensure that the millennial generation remains connected to batik as a vital part of Indonesia's cultural heritage, preventing cultural erosion amidst technological advancements through the intricate and exploratory study of mathematics.
Keywords
Batik
Ethnomathematics
Truntum
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Abdullah, A. A., & Rahmawati, A. Y. (2021). Eksplorasi etnomatematika pada Batik Kayu Krebet Bantul [Exploration of ethnomathematics in Batik Krebet Wood Bantul]. UNION: Jurnal Pendidikan Matematika, 9(2), 163-172. https://doi.org/10.30738/union.v9i2.9531
- Afifah, D. S. N., Putri, I. M., & Listiawan, T. (2020). Eksplorasi etnomatematika pada Batik Gajah Mada motif Sekar Jagad Tulungagung [Ethnomathematical exploration of Gajah Mada Batik with the Sekar Jagad Tulungagung motif]. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 14(1), 101-112. https://doi.org/10.30598/barekengvol14iss1pp101-112
- Aflah, H., & Andhany, E. (2022). Etnomatematika dalam budaya suku alas di kabupaten Aceh Tenggara [Ethnomathematics in Alas tribal culture in Southeast Aceh district]. Jurnal Cendekia: Jurnal Pendidikan Matematika, 6(3), 2376-2390. https://doi.org/10.31004/cendekia.v6i3.1466
- Akmalia, N. (2020). Eksplorasi etnomatematika pada Batik Sekar Jagad Blambangan sebagai bahan ajar siswa [Ethnomathematics exploration of Sekar Jagad Blambangan Batik as student teaching material]. KadikmA, 11(2), 36-49. https://doi.org/10.19184/kdma.v11i2.19805
- Arwanto, A. (2017). Eksplorasi etnomatematika Batik Trusmi Cirebon untuk mengungkap nilai filosofi dan konsep matematis [Ethnomathematics exploration of Batik Trusmi Cirebon to reveal the value of philosophy and mathematical concepts]. Phenomenon: Jurnal Pendidikan MIPA, 7(1), 40-49. https://doi.org/10.21580/phen.2017.7.1.1493
- Astuti, E. P., Purwoko, R. Y., & Sintiya, M. W. (2019). Form of ethnomatematics in Adipurwo batik in learning of number patterns. Journal of Mathematics Science and Education, 1(2), 1-16. https://doi.org/10.31540/jmse.v1i2.273
- D'Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the learning of Mathematics, 5(1), 44-48. Retrieved from http://www.jstor.org/stable/40247876
- Darmawan, E. W., & Suparman, S. (2019). Design of mathematics learning media based on discovery learning to improve problem solving ability. Indonesian Journal on Learning and Advanced Education (IJOLAE), 1(2), 20-28. https://doi.org/10.23917/ijolae.v1i2.7564
- Dewi, A. F. K., Kinanti, M., & Sulistyorini, P. (2020). Pola barisan aritmetika pada pukulan ketukan dalam Gending Ketawang di gamelan Yogyakarta [Arithmetic sequence pattern of beat in Gending Ketawang of gamelan Yogyakarta]. In ProSANDIKA UNIKAL (Prosiding Seminar Nasional Pendidikan Matematika Universitas Pekalongan), (Vol. 1, pp. 7-14).
- Doellah, S. (2002). Batik, the impact of time and environment. Danar Hadi.
- Faiziyah, N., Khoirunnisa’, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, D., Rustamaji, R., & Warsito, W. (2021). Ethnomathematics: Mathematics in batik Solo. Journal of Physics: Conference Series, 1720(1), 012013. https://doi.org/10.1088/1742-6596/1720/1/012013
- Hada, K. L., Maulida, F. I., Dewi, A. S., Dewanti, C. K., & Surur, A. M. (2021). Pengembangan media pembelajaran Blabak Trarerodi pada materi geometri transformasi: Tahap expert review [Development of Blabak Trarrodi learning media on transformational geometry material: Expert review stage]. Jurnal Pendidikan Matematika (Kudus), 4(2), 155-178. https://doi.org/10.21043/jmtk.v4i2.12047
- Harahap, L., & Mujib, A. (2022). Eksplorasi etnomatematika pada motif batik Medan [Exploration of ethnomathematics in batik Medan motifs]. Ability: Journal of Education and Social Analysis, 3(2), 61-72.
- Hasanah, S. I., Hafsi, A. R., & Zayyadi, M. (2019). Pengembangan lembar kerja siswa berbasis etnomatematika dalam membangun pemahaman konsep siswa [Development of ethnomathematics worksheets in understanding students' concepts]. Jurnal Pendidikan Matematika dan IPA, 10(2), 183-191. https://doi.org/10.26418/jpmipa.v10i2.29609
- Hohenwarter, M., & Fuchs, K. (2004). Combination of dynamic geometry, algebra and calculus in the software system GeoGebra In Computer algebra systems and dynamic geometry systems in mathematics teaching conference, (Vol. 2002, pp. 1-6).
- Humaeroh, V. S., & Rahayu, D. V. (2022). Penggunaan bahan ajar etnomatematika batik nusantara pada pembelajaran geometri bidang di sekolah dasar [The application of Indonesian batik ethnomathematics teaching materials in geometry learning at elementary school]. Jurnal Kongruen, 1(4), 364-370.
- Ishartono, N., & Ningtyas, D. A. (2021). Exploring mathematical concepts in batik sidoluhur solo. International Journal on Emerging Mathematics Education, 5(2), 151-164. https://doi.org/10.12928/ijeme.v5i2.20660
- Islam, M. T., & Mariana, N. (2021). Konsep geometri dalam motif batik Mojokerto sebagai peninggalan kerajaan majapahit. Jurnal Penelitian Pendidikan Guru Sekolah Dasar, 9(7), 2788-2801.
- Ismail, S. (2014). Syarat atau nilai awal [Terms or initial value]. Jurnal Saintek, 7(1), 1-19.
- James, D. A. (1976). Polynomial and linear fractional factors of automorphy. Illinois Journal of Mathematics, 20(4), 653-668.
- Jamil, A. F. (2019). Geometri transformasi (Vol. 1). UMM Press.
- Martin, R. R. (1982). Prinicpal patches for computational geometry. Doctoral dissertation. University of Cambridge.
- Mitchelmore, M., & White, P. (2004). Abstraction in mathematics and mathematics learning In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2004, (Vol. 3, pp. 329-336).
- Mulyani, E., & Natalliasari, I. (2020). Eksplorasi etnomatematik batik Sukapura [Ethnomathematic exploration of batik Sukapura]. Mosharafa: Jurnal Pendidikan Matematika, 9(1), 131-142.
- Muttaqin, M. Z., Ningsih, S., & Ervina, E. (2018). Belajar matematika melalui batik Jlamprang [Learning math through batik Jlamprang]. In Prosiding Seminar Nasional Universitas Pekalongan “Job Outlook Mencari Atribut Ideal Lulusan Perguruan Tinggi.
- Nasryah, C. E., & Rahman, A. A. (2020). Ethnomathematics (matematika dalam perspektif budaya). Uwais Inspirasi Indonesia.
- Oktaviyani, D. M., Utami, N. W., & Utama, G. Y. (2023). Number and set theory in Gamelan: An ethnomathematics study. Jurnal VARIDIKA, 35(2), 110-126.
- Prahmana, R. C. I., & D'Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of Yogyakarta, Indonesia. Journal on Mathematics Education, 11(3), 439-456. https://doi.org/10.22342/jme.11.3.12949.439-456
- Pratiwi, V. A., & Nurcahyo, A. (2022). Implementasi home visit untuk meningkatkan minat belajar siswa SD di masa pandemi [Implementation of home visit to increase learning interest of elementary students during pandemic]. Buletin Pengembangan Perangkat Pembelajaran, 4(1), 8-13. https://doi.org/10.23917/bppp.v4i1.19426
- Rahmah, N. (2018). Hakikat pendidikan matematika [The principle of mathematics education]. Al-Khwarizmi: Jurnal Pendidikan Matematika dan Ilmu Pengetahuan Alam, 1(2), 1–10.
- Ramadhani, R., & Narpila, S. D. (2018). Problem based learning method with geogebra in mathematical learning. International Journal of Engineering and Technology(UAE), 7(3.2), 774-777. https://doi.org/10.14419/ijet.v7i3.2.18753
- Retnawati, H. (2016). Analisis kuantitatif instrumen penelitian (panduan peneliti, mahasiswa, dan psikometrian). Parama publishing.
- Rizali, N., & Sudardi, B. (2019). Identitas lokal dalam batik Parang Sukowati [Local identity in batik Parang Sukowati]. In Prosiding Seminar Nasional Bahasa, Sastra, dan Seni (Sesanti), (pp. 103-116).
- Roebyanto, G. (2014). Geometri pengukuran dan statistik. Penerbit Gunung Samudera.
- Safira, F., Prabawati, A. T., Fatimah, F., Safiri, A. D., & Kusuma, J. W. (2021). Etnomatematika: Nilai filosofis dan konsep matematika pada motif batik Banten [Ethnomathematics: Philosophical values and mathematical concepts in batik Banten motifs]. Himpunan: Jurnal Ilmiah Mahasiswa Pendidikan Matematika, 1(2), 162-168.
- Safitri, S. Y., Latifah, D., & Angelani, N. (2022). Etnomatematika pada batik Kawung sebagai referensi konteks barisan dan deret aritmatika [Ethnomathematics in batik Kawung as a reference context for arithmetic sequence and series]. Jurnal Pendidikan Matematika Undiksha, 13(1), 21–27. https://doi.org/10.23887/jjpm.v13i1.36881
- Sa'id, M. S., Arfinanti, N., & Azka, R. (2021). Etnomatematika pada budaya lokal batik Kawung [Ethnomathematics in batik Kawung local culture]. Jurnal Inovasi Pendidikan Matematika (JIPM), 3(2), 83-91.
- Sintiya, M. W., Astuti, E. P., & Purwoko, R. Y. (2021). Pengembangan e-modul berbasis etnomatematika motif batik adi purwo untuk siswa SMP [Development of ethnomathematics based e-modules of batik motifs Adi Purwo for SMP students]. Jurnal Pendidikan Matematika Raflesia, 6(1), 1-15.
- Sudirman, S., Rosyadi, R., & Lestari, W. D. (2017). Penggunaan etnomatematika pada karya seni batik Indramayu dalam pembelajaran geometri transformasi [The application of ethnomathematics in batik Indramayu artworks in learning transformation geometry]. Pedagogy: Jurnal Pendidikan Matematika, 2(1).
- Sudirman, S., Son, A. L., & Rosyadi, R. (2018). Penggunaan etnomatematika pada batik Paoman dalam pembelajaran geomteri bidang di sekolah dasar [The use of ethnomathematics on batik Paoman in learning geometry elementary school]. IndoMath: Indonesia Mathematics Education, 1(1), 27-34. https://doi.org/10.30738/indomath.v1i1.2093
- Sutama, S. (2019). Metode penelitian pendidikan kuantitatif, kualitatif, PTK, mix method, R & D [Educational research methods of quantitative, qualitative, classroom action research, mixed method, R & D]. CV Jasmine.
- Sutama, S. (2022). Metode Penelitian Pendidikan. Muhammadiyah University Press.
- Syamsuddin, S. (2004). Matematika SMK 2. Penerbit Grasindo.
- Trixie, A. A. (2020). Filosofi motif batik sebagai identitas bangsa Indonesia [The philosophy of batik motifs as the identity of the Indonesian nation]. Folio, 1(1), 1-9.
- Ulum, B. (2018). Etnomatematika Pasuruan: Eksplorasi geometri untuk sekolah dasar pada motif batik Pasedahan Suropati [Ethnomathematics Pasuruan: Exploration of geometry for elementary school in batik Pasedahan Suropati motifs]. Jurnal Review Pendidikan Dasar: Jurnal Kajian Pendidikan Dan Hasil Penelitian, 4(2), 686-696. https://doi.org/10.26740/jrpd.v4n2.p686-696
- Wati, L. L., Mutamainah, A., Setianingsih, L., & Fadiana, M. j. (2021). Eksplorasi etnomatematika pada batik Gedog [Exploration of ethnomathematics in batik Gedog]. Jurnal Riset Pembelajaran Matematika, 3(1), 27-34. https://doi.org/10.55719/jrpm.v3i1.259
- Widiyono, A., & Mawarti, D. A. (2020). Konstruksi sosial dan apresiasi masyarakat terhadap batik di kota Jepara [Social construction and public appreciation of batik in Jepara]. Umbara, 5(2), 132-140. https://doi.org/10.24198/umbara.v5i2.30788
- Widodo, W., Soekarba, S. R., & Kusharjanto, B. (2021). Pemaknaan motif Truntum batik Surakarta: Kajian semiotik Charles W. Morris [The meaning of Truntum motif in batik Surakarta: Charles W. Morris semiotic studies]. Sutasoma: Jurnal Sastra Jawa, 9(2), 197-210. https://doi.org/10.15294/sutasoma.v9i2.51542
- Wulandari, R. (2019). Optimasi hasil belajar geometri dan aktivitas belajar siswa SD kelas rendah melalui model example-non example berbasis etnomatematika batik Madura [Optimizing geometry learning outcomes and learning activities for lower grade elementary school students through an example-non-example model based on Madurese batik ethnomathematics]. Widyagogik: Jurnal Pendidikan dan Pembelajaran Sekolah Dasar, 7(1), 82-95.