Students' mathematical literacy in terms of metacognitive awareness

##plugins.themes.bootstrap3.article.main##

Nita Hidayati
Yohanes Leonardus Sukestiyarno
Emi Pujiastuti
Sugiman Sugiman
Stevanus Budi Waluya

Abstract

Research on mathematical literacy has been done, but mathematical literacy in metacognitive awareness has not been done much. This study aimed to analyze mathematical literacy in terms of students' metacognitive awareness. This research is qualitative. The instruments used are literacy tests and Metacognitive Awareness Inventory questionnaires. The research subjects consisted of 3 students with high metacognitive awareness and three students with moderate metacognitive awareness. Data evaluation employed a dynamic framework: gathering information, minimizing data, displaying data, and making conclusions. Students with high metacognitive awareness could complete all literacy indicators, namely, evaluating mathematical results in the context of the given problem, paying attention to important information again, and checking the calculations made. The pattern of metacognitive awareness of students with high metacognitive awareness is monitoring their declarative knowledge to identify problems and evaluate solutions. Meanwhile, students with moderate metacognitive awareness solve problems up to the level of using math to make a problem-solving plan. The pattern of metacognitive awareness of students with moderate metacognitive awareness is that they do not monitor the problem-solving steps. Continuous development is needed to determine the level of development of mathematical literacy by paying attention to students' metacognitive awareness. Through this research, further research on metacognitive awareness will be developed.

##plugins.themes.bootstrap3.article.details##


Section
Articles

References

Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45(1), 131–142. https://doi.org/10.1177/0013164485451012

Asmara, A. S., Waluya, S. B., Suyitno, H., Junaedi, I., & Ardiyanti, Y. (2024). Developing patterns of students' mathematical literacy processes: Insights from cognitive load theory and design-based research. Infinity Journal, 13(1), 197–214. https://doi.org/10.22460/infinity.v13i1.p197-214

Asriningsih, I., Saepuzaman, D., & Ferranie, S. (2017). Penerapan strategi metakognisi pada pembelajaran kooperatif untuk mengidentifikasi profil metakognisi siswa sma kelas X [Application of metacognitive strategies in cooperative learning to identify metacognitive profiles of grade X high school students]. Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika, 2(2), 166–177. https://doi.org/10.30870/gravity.v2i2.1131

Ayuningtyas, I. N., Amir, M. F., & Wardana, M. D. K. (2024). Elementary school students’ layers of understanding in solving literacy problems based on Sidoarjo context. Infinity Journal, 13(1), 157–174. https://doi.org/10.22460/infinity.v13i1.p157-174

Bolstad, O. H. (2020). Secondary teachers' operationalisation of mathematical literacy. European Journal of Science and Mathematics Education, 8(3), 115–135. https://doi.org/10.30935/scimath/9551

Çakici, D. (2018). Metacognitive awareness and critical thinking abilities of pre-service EFL teachers. Journal of Education and Learning, 7(5), 116–129. https://doi.org/10.5539/jel.v7n5p116

Cardelle-Elawar, M. (1995). Effects of metacognitive instruction on low achievers in mathematics problems. Teaching and Teacher Education, 11(1), 81–95. https://doi.org/10.1016/0742-051X(94)00019-3

Çini, A., Järvelä, S., Dindar, M., & Malmberg, J. (2023). How multiple levels of metacognitive awareness operate in collaborative problem solving. Metacognition and Learning, 18(3), 891–922. https://doi.org/10.1007/s11409-023-09358-7

Danial, M. (2010). Kesadaran metakognisi, keterampilan metakognisi, dan penguasaan konsep kimia dasar [Metacognitive awareness, metacognitive skills, and mastery of basic chemical concepts]. Jurnal Ilmu Pendidikan Universitas Negeri Malang, 17(3), 225–229. https://doi.org/10.17977/jip.v17i3.2722

Demirel, M., Aşkın, İ., & Yağcı, E. (2015). An investigation of teacher candidates’ metacognitive skills. Procedia - Social and Behavioral Sciences, 174, 1521–1528. https://doi.org/10.1016/j.sbspro.2015.01.783

Desmita, D. (2006). Psikologi pendidikan [Educational psychology]. PT. Remaja Rosdakarya.

Dewantara, A. H., Setiawati, F. A., & Saraswati, S. (2023). Towards numeracy literacy development: A single-case study on the use of the living book homeschooling model. Infinity Journal, 12(2), 225–242. https://doi.org/10.22460/infinity.v12i2.p225-242

Ehmke, T., Wild, E., & Müller-Kalhoff, T. (2005). Comparing adult mathematical literacy with PISA students: results of a pilot study. Zdm, 37(3), 159–167. https://doi.org/10.1007/s11858-005-0005-5

Fauzan, A., Harisman, Y., Yerizon, Y., Suherman, S., Tasman, F., Nisa, S., Sumarwati, S., Hafizatunnisa, H., & Syaputra, H. (2024). Realistic mathematics education (RME) to improve literacy and numeracy skills of elementary school students based on teachers’ experience. Infinity Journal, 13(2), 301–316. https://doi.org/10.22460/infinity.v13i2.p301-316

Genc, M., & Erbas, A. K. (2019). Secondary mathematics teachers' conceptions of mathematical literacy. International Journal of Education in Mathematics, Science and Technology, 7(3), 222–237. https://ijemst.com/index.php/ijemst/article/view/433

Güner, P., & Erbay, H. N. (2021). Metacognitive skills and problem-solving. International Journal of Research in Education and Science, 7(3), 715–734. https://doi.org/10.46328/ijres.1594

Haller, E. P., Child, D. A., & Walberg, H. J. (1988). Can comprehension be taught?: A quantitative synthesis of “metacognitive” studies. Educational Researcher, 17(9), 5–8. https://doi.org/10.3102/0013189X017009005

Harisman, Y., Mayani, D. E., Armiati, A., Syaputra, H., & Amiruddin, M. H. (2023). Analysis of student's ability to solve mathematical literacy problems in junior high schools in the city area. Infinity Journal, 12(1), 55–68. https://doi.org/10.22460/infinity.v12i1.p55-68

Hsu, L. M., & Field, R. (2003). Interrater agreement measures: Comments on kappan, cohen's kappa, scott's π, and aickin's α. Understanding Statistics, 2(3), 205–219. https://doi.org/10.1207/S15328031US0203_03

Isnawan, M. G. (2015). Pengkategorian kesadaran metakognitif mahasiswa pada pembelajaran aljabar linier di AMIKOM Mataram [Categorization of students' metacognitive awareness in linear algebra learning at AMIKOM Mataram]. In Seminar Nasional Matematika Dan Pendidikan Matematika UNY, (pp. 187–192).

Jaleel, S. (2016). A study on the metacognitive awareness of secondary school students. Universal Journal of Educational Research, 4(1), 165–172. https://doi.org/10.13189/ujer.2016.040121.

Jiang, Y., Ma, L., & Gao, L. (2016). Assessing teachers' metacognition in teaching: The teacher metacognition inventory. Teaching and Teacher Education, 59, 403–413. https://doi.org/10.1016/j.tate.2016.07.014

Kaberman, Z., & Dori, Y. J. (2009). Metacognition in chemical education: question posing in the case-based computerized learning environment. Instructional Science, 37(5), 403–436. https://doi.org/10.1007/s11251-008-9054-9

Kolar, V. M., & Hodnik, T. (2021). Mathematical literacy from the perspective of solving contextual problems. Başlık, 10(1), 467–483. https://doi.org/10.12973/eu-jer.10.1.467

Kusmaryono, I., Aminudin, M., Ubaidah, N., & Chamalah, E. (2024). The bridging understanding of language and mathematical symbols between teachers and students: An effort to increase mathematical literacy. Infinity Journal, 13(1), 251–270. https://doi.org/10.22460/infinity.v13i1.p251-270

Laamena, C. M., & Laurens, T. (2021). Mathematical literacy ability and metacognitive characteristics of mathematics pre-service teacher. Infinity Journal, 10(2), 259–270. https://doi.org/10.22460/infinity.v10i2.p259-270

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The role of mathematics in interdisciplinary STEM education. Zdm, 51(6), 869–884. https://doi.org/10.1007/s11858-019-01100-5

Machaba, F. M. (2017). Pedagogical demands in mathematics and mathematical literacy: A case of mathematics and mathematical literacy teachers and facilitators. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 95–108. https://doi.org/10.12973/ejmste/78243

McGuire, S. Y. (2023). Teach students how to learn: Strategies you can incorporate into any course to improve student metacognition, study skills, and motivation. Routledge. https://doi.org/10.4324/9781003447313

Mevarech, Z. R., & Fan, L. (2018). Cognition, metacognition, and mathematics literacy. In Y. J. Dori, Z. R. Mevarech, & D. R. Baker (Eds.), Cognition, metacognition, and culture in STEM education: Learning, teaching and assessment (pp. 261–278). Springer International Publishing. https://doi.org/10.1007/978-3-319-66659-4_12

Miles, M. B. (1994). Qualitative data analysis: An expanded sourcebook. Sage Publications.

OECD. (2013). PISA 2012 results: What students know and can do student performance in mathematics, reading and science volume I. OECD Publishing.

Ojose, B. (2011). Mathematics literacy: Are we able to put the mathematics we learn into everyday use. Journal of mathematics Education, 4(1), 89–100. https://doi.org/10.12691/education-7-10-1

Pantiwati, Y. (2013). Authentic assessment for improving cognitive skill, critical-creative thinking and meta-cognitive awareness. Journal of Education and Practice, 4(14), 1–9. https://iiste.org/Journals/index.php/JEP/article/view/6790/6903

Pate, M. L., & Miller, G. (2011). Effects of regulatory self-questioning on secondary-level students' problem-solving performance. Journal of Agricultural Education, 52(1), 72–84. https://doi.org/10.5032/jae.2011.01072

PUSMENJAR. (2020). AKM dan implikasinya pada pembelajaran [AKM and its implications for learning]. Pusat Asesmen dan Pembelajaran, Badan Penelitian dan Pengembangan dan Perbukuan, Kementerian Pendidikan dan Kebudayaan.

Ramlah, R., Siswono, T. Y. E., & Lukito, A. (2024). Revealing the uniqueness of variations in prospective teachers' metacognitive activities in solving mathematical problems based on gender. Infinity Journal, 13(2), 477–500. https://doi.org/10.22460/infinity.v13i2.p477-500

Rivas, S. F., Saiz, C., & Ossa, C. (2022). Metacognitive strategies and development of critical thinking in higher education. Frontiers in psychology, 13, 913219. https://doi.org/10.3389/fpsyg.2022.913219

Rohm, A. J., Stefl, M., & Ward, N. (2021). Future proof and real-world ready: The role of live project-based learning in students’ skill development. Journal of Marketing Education, 43(2), 204–215. https://doi.org/10.1177/02734753211001409

Sari, R. H. N., & Wijaya, A. (2017). Mathematical literacy of senior high school students in Yogyakarta. Jurnal Riset Pendidikan Matematika, 4(1), 100–107. https://doi.org/10.21831/jrpm.v4i1.10649

Sastrawati, E., Rusdi, M., & Syamsurizal. (2011). Problem based learning, strategi metakognisi, dan keterampilan berpikir tingkat tinggi siswa [Problem-based learning, metacognitive strategies, and students' high-order thinking skills]. Jurnal Tekno-Pedagogi, 1(2), 1–14. https://doi.org/10.22437/teknopedagogi.v1i2.668

Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36(1), 111–139. https://doi.org/10.1007/s11165-005-3917-8

Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460–475. https://doi.org/10.1006/ceps.1994.1033

Scott, C. L. (2015). The futures of learning 2: What kind of learning for the 21st century. Education research and foresight working papers, 3, 1–14.

Sistyawati, R. I., Zulkardi, Z., Putri, R. I. I., Samsuriyadi, S., Alwi, Z., Sepriliani, S. P., Tanjung, A. L., Pratiwi, R. P., Aprilisa, S., Nusantara, D. S., Meryansumayeka, M., & Jayanti, J. (2023). Development of Pisa Types of Questions and Activities Content Shape and Space Context Pandemic Period. Infinity Journal, 12(1), 1–12. https://doi.org/10.22460/infinity.v12i1.p1-12

Sukestiyarno, Y. L. (2020). Metode penelitian pendidikan [Educational research methods]. UNNES Press.

Supianti, I. I., Yaniawati, P., Osman, S. Z. M., Al-Tamar, J., & Lestari, N. (2022). Development of teaching materials for e-learning-based statistics materials oriented towards the mathematical literacy ability of vocational high school students. Infinity Journal, 11(2), 237–254. https://doi.org/10.22460/infinity.v11i2.p237-254

Tutkun, O. F., Erdogan, D. G., & Ozturk, B. (2014). Levels of visual mathematics literacy self-efficacy perception of the secondary school students. Middle Eastern & African Journal of Educational Research, 8(1), 19–27.

Veenman, M. V. J., Bavelaar, L., De Wolf, L., & Van Haaren, M. G. P. (2014). The on-line assessment of metacognitive skills in a computerized learning environment. Learning and Individual Differences, 29, 123–130. https://doi.org/10.1016/j.lindif.2013.01.003

Wijaya, T. T., Hidayat, W., Hermita, N., Alim, J. A., & Talib, C. A. (2024). Exploring contributing factors to PISA 2022 mathematics achievement: Insights from Indonesian teachers. Infinity Journal, 13(1), 139–156. https://doi.org/10.22460/infinity.v13i1.p139-156

Yang, K.-L., & Lin, F.-L. (2015). The effects of PISA in Taiwan: Contemporary assessment reform. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 261–273). Springer International Publishing. https://doi.org/10.1007/978-3-319-10121-7_14

Yavuz, G., Gunhan, B. C., Ersoy, E., & Narli, S. (2013). Self-efficacy beliefs of prospective primary mathematics teachers about mathematical literacy. Journal of College Teaching & Learning (Online), 10(4), 279–288. https://doi.org/10.19030/tlc.v10i4.8124

Zhao, N., Wardeska, J. G., McGuire, S. Y., & Cook, E. (2014). Metacognition: An effective tool to promote success in college science learning. Journal of College Science Teaching, 43(4), 48–54. https://doi.org/10.2505/4/jcst14_043_04_48