Development of algebraic expressions e-modules through realistic mathematics education approach
##plugins.themes.bootstrap3.article.main##
Abstract
Students often struggle with algebraic expressions due to the abstract nature of mathematical symbols. The Realistic Mathematics Education (RME) approach offers an alternative to help students solve these problems. This study aimed to develop a valid, practical, and effective e-module based on the RME approach, incorporating video triggers, live worksheets, learning trajectories, and assessments for teaching algebraic expressions. The research followed Plomp’s development models, including preliminary, prototyping, and assessment phases, with two groups of students (control and experimental). The results showed that the e-module was valid, receiving average scores of 4.68 and 4.8 from media and material experts, while the inter-rater reliability demonstrated substantial agreement (κ = 0.654), indicating a high level of consistency. The practicality of the e-module was demonstrated through teacher and student response questionnaires, which indicated that the RME-based e-module is practical for use in learning. The e-module’s effectiveness was evidenced by the learning outcomes, which showed a significant difference (p = 0.015, Cohen’s d = 0.65), indicating a moderately strong effect on student learning outcomes. These findings contribute to the advancement of digital mathematics learning resources and highlight the potential of RME-based interactive e-modules to enhance students’ understanding of algebraic expressions.
##plugins.themes.bootstrap3.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The author is responsible for acquiring the permission(s) to reproduce any copyrighted figures, tables, data, or text that are being used in the submitted paper. Authors should note that text quotations of more than 250 words from a published or copyrighted work will require grant of permission from the original publisher to reprint. The written permission letter(s) must be submitted together with the manuscript.References
Allen, I. E., & Seaman, C. A. (2007). Likert scales and data analyses. Quality progress, 40(7), 64–65.
Azizah, U., Djono, D., & Musadad, A. A. (2020). Developing digital book based on Lafran Pane' thought for increasing state defend attitude of students. Yupa: Historical Studies Journal, 4(1), 29–39. https://doi.org/10.30872/yupa.v4i1.235
Baroudi, Z. (2006). Easing students' transition to algebra. The Australian Mathematics Teacher, 62(2), 28–33.
Benitha, A., & Novaliyosi, N. (2022). Pengembangan e-modul berbasis realistic mathematics education (RME) pada materi aljabar untuk siswa kelas VII SMP/MTs [Development of e-modules based on realistic mathematics education (RME) on algebra material for grade VII junior high school/Islamic junior high school students]. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 3(2), 279–286. https://doi.org/10.46306/lb.v3i2.121
Blaikie, N. (2003). Analyzing quantitative data: From description to explanation. SAGE Publications.
Bonotto, C. (2010). Realistic mathematical modeling and problem posing. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling Students' Mathematical Modeling Competencies: ICTMA 13 (pp. 399–408). Springer US. https://doi.org/10.1007/978-1-4419-0561-1_34
Booker, G. (1987). Conceptual obstacles to the development of algebraic thinking. In Proceedings of the International Conference on the Psychology of Mathematics Education (PME), Montreal, Canada (pp. 303–309).
Booth, L. R. (1988). Children's difficulties in beginning algebra. In A. F. Coxford (Ed.), The ideas of algebra, k-12 (1988 Yearbook) (pp. 20–32). National Council of Teachers of Mathematics. https://cir.nii.ac.jp/crid/1571698599027290496
Brandell, G., Hemmi, K., & Thunberg, H. (2008). The widening gap—A swedish perspective. Mathematics Education Research Journal, 20(2), 38–56. https://doi.org/10.1007/BF03217476
Bray, A., & Tangney, B. (2015). Enhancing student engagement through the affordances of mobile technology: A 21st century learning perspective on realistic mathematics education. Mathematics Education Research Journal, 28(1), 173–197. https://doi.org/10.1007/s13394-015-0158-7
Buckingham, D. (2007). Media education goes digital: an introduction. Learning, Media and Technology, 32(2), 111–119. https://doi.org/10.1080/17439880701343006
Chazan, D. (1996). Algebra for all students? The Journal of Mathematical Behavior, 15(4), 455–477. https://doi.org/10.1016/s0732-3123(96)90030-9
Chow, T. C., & Treagust, D. (2013). An intervention study using cognitive conflict to foster conceptual change. Journal of Science and Mathematics Education in Southeast Asia, 36(1), 44–64.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge. https://doi.org/10.4324/9780203771587
de Siqueira, A. B., Berardi, A., Mistry, J., & Rothberg, D. (2016). Experimenting with media education, civic engagement, and sustainability in Brazilian schools. In H. S. Dunn, L. Robinson, J. Schulz, P. Aguiar, A. Artopoulos, J. Baldwin, M. Martinez, S. V. Moreira, H. Pait, A. C. La Pastina, J. D. Straubhaar, & J. Harrison (Eds.), Communication and Information Technologies Annual: Digital Empowerment: Opportunities and Challenges of Inclusion in Latin America and the Caribbean (pp. 41–61). Emerald Group Publishing Limited. https://doi.org/10.1108/s2050-206020160000012004
Diarta, F., Tiara, T., Kantun, S., & Sari, D. E. (2021). The effectiveness of the digital books’ usage to improve the XII IPS 3 class students’ motivation at SMAN Pakusari Jember. IOP Conference Series: Earth and Environmental Science, 747(1), 012101. https://doi.org/10.1088/1755-1315/747/1/012101
Drijvers, P. (2004). Learning algebra in a computer algebra environment. The International Journal for Technology in Mathematics Education, 11(3), 77–89.
Egodawatte, G. (2011). Secondary school students’ misconceptions in algebra. Ph.D. Thesis, University of Toronto, Canada. Retrieved from https://utoronto.scholaris.ca/items/c4182d39-a1c7-41cd-a5a9-08ad41c95a01
Freudenthal, H. (1971). Geometry between the devil and the deep sea. In H.-G. Steiner (Ed.), The Teaching of Geometry at the Pre-College Level: Proceedings of the Second CSMP International Conference Co-Sponsored by Southern Illinois University and Central Midwestern Regional Educational Laboratory (pp. 137–159). Springer Netherlands. https://doi.org/10.1007/978-94-017-5896-3_10
Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Kluwer Academic Publishers.
Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Educational research: An introduction (6th ed.). Longman Publishing.
Gea, K. M., Rangkuti, Y. M., & Minarni, A. (2022). Pengembangan bahan ajar digital berbasis RME untuk meningkatkan kemampuan pemecahan masalah matematik dan kemandirian belajar siswa SMP Gajah Mada Medan [Development of RME-based digital teaching materials to improve mathematical problem-solving skills and learning independence of students at Gajah Mada Middle School of Medan]. Jurnal Cendekia: Jurnal Pendidikan Matematika, 6, 2270–2285.
Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. Freudenthal Institute.
Hall, R. D. G. (2002). An analysis of thought processes during simplification of an algebraic expression. Journal of mathematics Education, 15, 1–15.
Herawati, N. T. (2017). The implementation of self regulated learning model using ICT media toward the students achievement in introduction to accounting course. Journal of Accounting and Business Education, 2(1), 144–157. https://doi.org/10.26675/jabe.v1i1.9755
Heriyadi, H., & Prahmana, R. C. I. (2020). Pengembangan lembar kegiatan siswa menggunakan pendekatan pendidikan matematika realistik [Development of student activity sheets using a realistic mathematics education approach]. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 9(2), 395–412. https://doi.org/10.24127/ajpm.v9i2.2782
Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27(1), 59–78. https://doi.org/10.1007/bf01284528
Hiebert, J., Stigler, J. W., Jacobs, J. K., Givvin, K. B., Garnier, H., Smith, M., Hollingsworth, H., Manaster, A., Wearne, D., & Gallimore, R. (2005). Mathematics teaching in the United States today (and tomorrow): Results From the TIMSS 1999 video study. Educational Evaluation and Policy Analysis, 27(2), 111–132. https://doi.org/10.3102/01623737027002111
Higgins, S., Xiao, Z., & Katsipataki, M. (2012). The impact of digital technology on learning: A summary for the education endowment foundation. Education Endowment Foundation and Durham University.
Jamieson, S. (2004). Likert scales: How to (ab)use them. Medical Education, 38(12), 1217–1218. https://doi.org/10.1111/j.1365-2929.2004.02012.x
Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Computers & Education, 55(3), 1259–1269. https://doi.org/10.1016/j.compedu.2010.05.022
Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the national council of teachers of mathematics (pp. 390–419). National Council of Teachers of Mathematics.
Kismiati, D. A. (2020). Pengembangan e-modul pengayaan isolasi dan karakterisasi bakteri sebagai sumber belajar biologi [Development of an e-module for enrichment of bacterial isolation and characterization as a biology learning resource]. Jurnal Bioeducation, 7(2), 29–36.
Kolovou, A. (2011). Mathematical problem solving in primary school. Dissertation. Utrecht University. Retrieved from https://dspace.library.uu.nl/handle/1874/205718
Komikesari, H., Mutoharoh, M., Dewi, P. S., Utami, G. N., Anggraini, W., & Himmah, E. F. (2020). Development of e-module using flip pdf professional on temperature and heat material. Journal of Physics: Conference Series, 1572(1), 012017. https://doi.org/10.1088/1742-6596/1572/1/012017
Kurniansyah, M. Y., Hidayat, W., & Rohaeti, E. E. (2022). Development of combined module using contextual scientific approach to enhance students' cognitive and affective. Infinity Journal, 11(2), 349–366. https://doi.org/10.22460/infinity.v11i2.p349-366
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310
Laurens, T., Batlolona, J. R., Batlolona, F. A., & Leasa, M. (2017). How does realistic mathematics education (RME) improve students’ mathematics cognitive achievement? Eurasia Journal of Mathematics, Science and Technology Education, 14(2), 569–578. https://doi.org/10.12973/ejmste/76959
Leow, F.-T., & Neo, M. (2014). Interactive multimedia learning: Innovating classroom education in a Malaysian university. Turkish Online Journal of Educational Technology-TOJET, 13(2), 99–110.
Lestari, R., Prahmana, R. C. I., Chong, M. S. F., & Shahrill, M. (2023). Developing realistic mathematics education-based worksheets for improving students’ critical thinking skills. Infinity Journal, 12(1), 69–84. https://doi.org/10.22460/infinity.v12i1.p69-84
Morgan, K. (2011). Mastery learning in the science classroom: Success for every student. National Science Teachers Association Press.
Musyrifah, E., Nurasiah, D., & Hafiz, M. (2023). Meningkatkan kemampuan berpikir aljabar siswa dengan pendekatan realistic mathematics education (RME) [Improving students' algebraic thinking skills with a realistic mathematics education (RME) approach]. ALGORITMA: Journal of Mathematics Education, 5(1), 13–25. https://doi.org/10.15408/ajme.v5i1.32581
Nieveen, N. (1999). Prototyping to reach product quality. In J. van den Akker, R. M. Branch, K. Gustafson, N. Nieveen, & T. Plomp (Eds.), Design approaches and tools in education and training (pp. 125–135). Springer Netherlands. https://doi.org/10.1007/978-94-011-4255-7_10
Palinussa, A. L., Tupamahu, P. Z., Sabandar, V. P., Makaruku, Y. H., & Sabandar, J. (2024). Realistic mathematics education: Mathematics e-modules in improving student learning outcomes. Infinity Journal, 14(1), 45–64. https://doi.org/10.22460/infinity.v14i1.p45-64
Plomp, T. (2013). Educational design research: An introduction. In T. Plomp & N. Nieveen (Eds.), Educational design research (pp. 10–51). SLO.
Prasetyo, G., Hidayatullah, M. F., Akhyar, M., Wiranto, W., & Perdana, R. (2020). Strengthening students' character through multimedia learning in primary schools education: Systematic literature reviews. Humanities & Social Sciences Reviews, 8(3), 268–277. https://doi.org/10.18510/hssr.2020.8328
Purnomo, Y. W., Nabillah, R., Aziz, T. A., & Widodo, S. A. (2024). Fostering mathematical connections and habits of mind: A problem-based learning module for elementary education. Infinity Journal, 13(2), 333–348. https://doi.org/10.22460/infinity.v13i2.p333-348
Puspitarini, Y. D., & Hanif, M. (2019). Using learning media to increase learning motivation in elementary school. Anatolian Journal of Education, 4(2), 53–60. https://doi.org/10.29333/aje.2019.426a
Ramadhan, S., Mardapi, D., Prasetyo, Z. K., & Utomo, H. B. (2019). The development of an instrument to measure the higher order thinking skill in physics. European Journal of Educational Research, 8(3), 743–751. https://doi.org/10.12973/eu-jer.8.3.743
Reiss, K., & Törner, G. (2007). Problem solving in the mathematics classroom: The German perspective. Zdm, 39(5-6), 431–441. https://doi.org/10.1007/s11858-007-0040-5
Rudyanto, H. E., Marsigit, M., Wangid, M. N., & Gembong, S. (2019). The use of bring your own device-based learning to measure student algebraic thinking ability. International Journal of Emerging Technologies in Learning (iJET), 14(23), 233–241. https://doi.org/10.3991/ijet.v14i23.11050
Safitri, L., Novaliyosi, N., & Jaenudin, J. (2022). Pengembangan e-modul berbasis realistic mathematics education pada materi aritmatika sosial untuk siswa kelas VII [Development of e-modules based on realistic mathematics education on social arithmetic material for grade VII students]. MATH-EDU: Jurnal Ilmu Pendidikan Matematika, 7(2), 60–73.
Salavera, C., Usán, P., & Teruel, P. (2019). Contextual problems, emotional intelligence and social skills in Secondary Education students. Gender differences. Annales Médico-psychologiques, revue psychiatrique, 177(3), 223–230. https://doi.org/10.1016/j.amp.2018.07.008
Sarımanoğlu, N. U. (2019). The investigation of middle school students’ misconceptions about algebra. Studies in Educational Research and Development, 3(1), 1–22.
Setiyani, S., Waluya, S. B., Sukestiyarno, Y. L., & Cahyono, A. N. (2022). E-module design using Kvisoft Flipbook Application based on mathematics creative thinking ability for junior high schools. International Journal of Interactive Mobile Technologies (iJIM), 16(4), 116–136. https://doi.org/10.3991/ijim.v16i04.25329
Sholikhah, N. m., Pamungkas, H. P., Surjanti, J., & Sakti, N. C. (2022). E-module of mathematics economic using heutagogy approach for distance learning: Is it effective? Journal of Education Technology, 6(2), 182–190. https://doi.org/10.23887/jet.v6i2.45619
Smaldino, S. E., Lowther, D. L., Russell, J. D., & Mims, C. (2009). Instructional technology and media for learning. Pearson.
Stacey, K., Chick, H., & Kendal, M. (2004). The future of the teaching and learning of algebra: The 12th ICMI study. Kluwer Academic Publishers.
Sutarni, S., Sutama, S., Prayitno, H. J., Sutopo, A., & Laksmiwati, P. A. (2024). The development of realistic mathematics education-based student worksheets to enhance higher-order thinking skills and mathematical ability. Infinity Journal, 13(2), 285–300. https://doi.org/10.22460/infinity.v13i2.p285-300
Trilestari, K., & Almunawaroh, N. F. (2021). E-module as a solution for young learners to study at home. In Proceedings of the 4th Sriwijaya University Learning and Education International Conference (SULE-IC 2020), (pp. 364–369). https://doi.org/10.2991/assehr.k.201230.132
Usiskin, Z. (1995). Why is algebra important to learn? American Educator, 19(1), 30–37.
van den Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 713–717). Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_170
Voithofer, R. (2005). Designing new media education research: The materiality of data, representation, and dissemination. Educational Researcher, 34(9), 3–14. https://doi.org/10.3102/0013189x034009003
Warren, E. (2003). The role of arithmetic structure in the transition from arithmetic to algebra. Mathematics Education Research Journal, 15(2), 122–137. https://doi.org/10.1007/bf03217374
Watson, A. (2009). Algebraic reasoning: Key understanding in mathematics learning. In: University of Oxford.
Weng, C., Otanga, S., Weng, A., & Cox, J. (2018). Effects of interactivity in E-textbooks on 7th graders science learning and cognitive load. Computers & Education, 120, 172–184. https://doi.org/10.1016/j.compedu.2018.02.008
Witzel, B. S., Mercer, C. D., & Miller, M. D. (2003). Teaching algebra to students with learning difficulties: An investigation of an explicit instruction model. Learning Disabilities Research & Practice, 18(2), 121–131. https://doi.org/10.1111/1540-5826.00068
Young, J. R. (2017). Technology integration in mathematics education: Examining the quality of meta-analytic research. International Journal on Emerging Mathematics Education, 1(1), 71–86. https://doi.org/10.12928/ijeme.v1i1.5713
Yuhasriati, Y., Johar, R., Khairunnisak, C., Rohaizati, U., Jupri, A., & Zubaidah, T. (2022). Students mathematical representation ability in learning algebraic expression using realistic mathematics education. Jurnal Didaktik Matematika, 9(1), 151–169. https://doi.org/10.24815/jdm.v9i1.25434