THE ARGUMENT AND DEMONSTRATION EXEMPLIFIED IN A MATHEMATICAL DIALOGUE
##plugins.themes.bootstrap3.article.main##
Abstract
##plugins.themes.bootstrap3.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The author is responsible for acquiring the permission(s) to reproduce any copyrighted figures, tables, data, or text that are being used in the submitted paper. Authors should note that text quotations of more than 250 words from a published or copyrighted work will require grant of permission from the original publisher to reprint. The written permission letter(s) must be submitted together with the manuscript.References
Association of Mathematics Teacher Educators [AMTE]. (2017). Standards for mathematics teacher preparation. Association of Mathematics Teacher Educators. Retrieved from https://amte.net/standards
Balacheff, N. (1999). Is Argumentation an Obstacle? Invitation to a Debate. Retrieved from: https://files.eric.ed.gov/fulltext/ED435644.pdf
Beam, J., Belnap, J., Kuennen, E., Parrott, A., Seaman, C., & Szydlik, J. (2019). Big ideas in mathematics for future teachers: Big ideas in geometry and data analysis. Retrieved from https://www.uwosh.edu/mathematics/BigIdeas/BigIdeas
Beam, J., Belnap, J., Kuennen, E., Parrott, A., Seaman, C., & Szydlik, J. (2019). Big ideas in mathematics for future teachers: big ideas in numbers and operations. Retrieved from https://www.uwosh.edu/mathematics/BigIdeas/BigIdeas
Benitez, D. (2006). The use of the Internet to support research in educational mathematics. In Memoirs of the XIV Meeting of Professors of Mathematics (pp. 19-36). Educational Mathematics Area, Universidad Michoacana de San Nicolás de Hidalgo.
Cañadas, M. C. (2002). Razonamiento inductivo puesto de manifiesto por alumnos de secundaria. Universidad de Granada.
Canadas, M. C., Castro, E., & Castro, E. (2008). Patterns, generalization and inductive strategies of secondary students working on the tiles problem. PNA-REVISTA DE INVESTIGACION EN DIDACTICA DE LA MATEMATICA, 2(3), 137-151.
Castro, F., RodrÃguez, A. A. T., Campos Nava, M., & Morales Maure, L. (2021). La construcción cientÃfica del conocimiento de los estudiantes a partir de las gráficas con tracker. Revista Universidad y Sociedad, 13(1), 83-88.
GarcÃa, O., & Morales, L. (2013). El contraejemplo como recurso didáctico en la enseñanza del cálculo. UNIÓN. Revista Iberoamericana de Educación Matemática, 35, 161-175.
Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. Zdm, 39(1), 127-135. https://doi.org/10.1007/s11858-006-0004-1
Godino, J. D., Font, V., Wilhelmi, M. R., & Lurduy, O. (2011). Why is the learning of elementary arithmetic concepts difficult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics, 77(2), 247-265. https://doi.org/10.1007/s10649-010-9278-x
Ibañes, M. (2001). Aspectos cognitivos del aprendizaje de la demostración matemática en alumnos de primer curso de bachillerato [Cognitive aspects of learning mathematical proofs in students in fifth year of secondary education]. Valladolid: Universidad de Valladolid.
Johnson-Laird, P. N., & Byrne, R. M. J. (1993). Précis of Deduction. Behavioral and Brain Sciences, 16(2), 323-333. https://doi.org/10.1017/S0140525X00030260
Klauer, K. J. (2001). Training des induktiven Denkens. Handbuch kognitives Training, 2, 165-209.
Klauer, K. J., & Phye, G. D. (1994). Cognitive training for children: A developmental program of inductive reasoning and problem solving. Seattle; Toronto: Hogrefe & Huber.
Mallart, A., Font, V., & Diez, J. (2018). Case study on mathematics pre-service teachers’ difficulties in problem posing. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1465-1481. https://doi.org/10.29333/ejmste/83682
Marrades, R., & Gutiérrez, Ã. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1), 87-125. https://doi.org/10.1023/A:1012785106627
Martin, M. O., von Davier, M., & Mullis, I. V. (2020). Methods and Procedures: TIMSS 2019 Technical Report. International Association for the Evaluation of Educational Achievement.
Maure, L. M., Fábrega, D., Nava, M. C., & Marimón, O. G. (2018). Articulation of ethnomathematical knowledge in the intercultural bilingual education of the Guna people. Educational Research and Reviews, 13(8), 307-318. https://doi.org/10.5897/ERR2017.3438
Morales-Maure, L., GarcÃa-Marimónb, O., GarcÃa-Vázquez, E., Campos-Navad, M., Gutiérrez, J., & EsbrÃe, M. Ã. (2022). Leading teachers who promote math learning. Journal of Positive Psychology and Wellbeing, 6(1), 2098-2108.
Neubert, G. A., & Binko, J. B. (1992). Inductive Reasoning in the Secondary Classroom. Washington DC: National Education Association.
Osorio, V. L. (2002). Demostraciones y conjeturas en la escuela media. Revista electrónica de didáctica de las matemáticas, 2(3), 45-55.
Plato. (2003). Dialogues. Volume V: Parmenides. Teeteto. Sophist. Political. Madrid: Editorial Gredos.
Polya, G. (1967). La découverte des mathématiques (2 volumes). Paris: Wiley/Dunod.
Sánchez, A., Font, V., & Breda, A. (2021). Significance of creativity and its development in mathematics classes for preservice teachers who are not trained to develop students’ creativity. Mathematics Education Research Journal, 1-23. https://doi.org/10.1007/s13394-021-00367-w
Schleicher, A. (2019). PISA 2018: Insights and interpretations. OECD Publishing.
Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196(2), 1-38. https://doi.org/10.1177/002205741619600202
Stenning, K., & Monaghan, P. (2005). Strategies and knowledge representation. In J. P. Leighton & R. J. Sternberg (Eds.), The nature of reasoning (pp. 129-168). Cambridge: Cambridge University Press.
Sternberg, R. J., & Gardner, M. K. (1983). Unities in inductive reasoning. Journal of Experimental Psychology: General, 112(1), 80-116. https://doi.org/10.1037/0096-3445.112.1.80
Yáñez, J. C., Rojas, N., & MartÃnez, P. F. (2013). Caracterización del conocimiento matemático para la enseñanza de los números racionales. Avances de investigación en Educación Matemática(4), 47-64.