Main Article Content

Abstract

Understanding and constructing mathematical proofs is fundamental for students in abstract algebra courses. The computational thinking approach can aid the process of compiling mathematical proofs. This study examined the impact of integrating computational thinking components in constructing mathematical proofs. The researcher employed a sequential explanatory approach to ascertain the enhancement of algebraic proof capability based on computational thinking through the t- test. A total of 32 prospective teachers in mathematics education programs were provided with worksheets for seven meetings, which were combined with computational thinking components. Quantitative data were collected from initial and subsequent test instruments. Moreover, three prospective teachers were examined through case studies to investigate their mathematical proof capability using computational thinking components, including decomposition, abstraction, pattern recognition, and algorithmic thinking. The study's findings indicated that CT intervention enhanced students' logical reasoning, proof-writing abilities, and overall engagement with abstract algebra concepts. The findings illustrate that integrating computational thinking into learning strategies can provide a framework for developing higher-order thinking skills, especially in proving, which are essential for studies in mathematics education programs.

Keywords

Abstract algebra Computational thinking Mathematical proof Prospective teacher Worksheet design

Article Details

References

  1. A'idah, Z. (2022). Analis kemampuan argumentasi matematis siswa dalam pembuktian matematika ditinjau dari kecerdasan linguistik. FITK UIN Syarif Hidayatullah Jakarta. https://repository.uinjkt.ac.id/dspace/handle/123456789/58913

  2. Albert, A. A. (2018). Modern higher algebra. Courier Dover Publications.

  3. Ambarwati, S., Fauzan, A., & Fauzi, A. (2017). Improving communication ability and problem solving mathematical by using PACE model learning reviewed from difference learning style and self efficacy In International Conference on Mathematics and Mathematics Education (ICM2E 2017), Universitas Negeri Padang, West Sumatera, Indonesia (pp. 335-361).

  4. Arbaugh, F., Smith, M., Boyle, J., Stylianides, G. J., & Steele, M. (2018). We reason & we prove for all mathematics: Building students’ critical thinking, grades 6–12. Corwin Press. https://doi.org/10.4135/9781071800812

  5. Arnawa, I. M., Yerizon, Y., & Nita, S. (2020). Improvement students' achievement in elementary linear algebra through APOS theory approach. Journal of Physics: Conference Series, 1567(2), 022080. https://doi.org/10.1088/1742-6596/1567/2/022080

  6. Assaraf, O. B. Z., & Orion, N. (2005). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42(5), 518-560. https://doi.org/10.1002/tea.20061

  7. Aydeniz, M. (2018). Integrating computational thinking in school curriculum. In M. S. Khine (Ed.), Computational Thinking in the STEM Disciplines: Foundations and Research Highlights (pp. 253-277). Springer International Publishing. https://doi.org/10.1007/978-3-319-93566-9_13

  8. Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A Research Companion to Principles and Standards for School Mathematics (pp. 27-44). National Council of Teachers of Mathematics.

  9. Belay, A. M., Machaba, F., & Makgakga, T. P. (2024). Introducing a supportive framework to address students’ misconceptions and difficulties in the learning mathematical proof techniques: A case of debark university in Ethiopia. Research in Social Sciences and Technology, 9(1), 63-84. https://doi.org/10.46303/ressat.2024.4

  10. Bergwall, A. (2019). Proof-related reasoning in upper secondary school: characteristics of Swedish and Finnish textbooks. International Journal of Mathematical Education in Science and Technology, 52(5), 731-751. https://doi.org/10.1080/0020739X.2019.1704085

  11. Bruner, J. (1974). Toward a theory of instruction. Harvard university press.

  12. Calado, A., Roselli, P., Gruppioni, E., Marinelli, A., Bellingegni, A. D., Boccardo, N., & Saggio, G. (2024). A geometric algebra-based approach for myoelectric pattern recognition control and faster prosthesis recalibration. Expert Systems with Applications, 254, 124373. https://doi.org/10.1016/j.eswa.2024.124373

  13. Cansu, F. K., & Cansu, S. K. (2019). An overview of computational thinking. International Journal of Computer Science Education in Schools, 3(1), 17-30. https://doi.org/10.21585/ijcses.v3i1.53

  14. Cetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. Journal of Mathematical Behavior, 47, 70-80. https://doi.org/10.1016/j.jmathb.2017.06.004

  15. Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: a model for creative computational problem solving. International journal of STEM education, 7(1), 39. https://doi.org/10.1186/s40594-020-00238-z

  16. Coşkun, I., Özen Ünal, D., Eryalçin, S., & Yazici, E. (2024). Investigation of pre-service middle school mathematics teachers habits of mind in pattern generalization problems. Osmangazi Journal of Educational Research, 10(2), 52-75. https://doi.org/10.59409/ojer.1359752

  17. Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.

  18. Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Computational thinking-A guide for teachers. University of Southampton. https://eprints.soton.ac.uk/424545/

  19. Curzon, P., & McOwan, P. W. (2017). The power of computational thinking: Games, magic and puzzles to help you become a computational thinker. World Scientific. https://doi.org/10.1142/q0054

  20. D'Alessandro, W. (2019). Explanation in mathematics: Proofs and practice. Philosophy Compass, 14, e12629. https://doi.org/10.1111/phc3.12629

  21. Davison, R. C. R., & Smith, P. M. (2018). Quantitative data analyses. In S. R. Bird (Ed.), Research Methods in Physical Activity and Health (pp. 168-183). Routledge. https://doi.org/10.4324/9781315158501-17

  22. Dong, Y., Cateté, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., Joshi, D., Robinson, R., & Andrews, A. (2019). Prada: A practical model for integrating computational thinking in K-12 education In SIGCSE '19: The 50th ACM Technical Symposium on Computer Science Education, New York (pp. 906-912). https://doi.org/10.1145/3287324.3287431

  23. Doruk, M., & Kaplan, A. (2015). Prospective mathematics teachers’ difficulties in doing proofs and causes of their struggle with proofs. Bayburt Eğitim Fakültesi Dergisi, 10(2), 315-328.

  24. Emara, M., Hutchins, N. M., Grover, S., Snyder, C., & Biswas, G. (2021). Examining student regulation of collaborative, computational, problem-solving processes in openended learning environments. Journal of Learning Analytics, 8(1), 49-74. https://doi.org/10.18608/JLA.2021.7230

  25. Etikan, I., Musa, S. A., & Alkassim, R. S. (2015). Comparison of convenience sampling and purposive sampling. American journal of theoretical and applied statistics, 5(1), 1-4. https://doi.org/10.11648/j.ajtas.20160501.11

  26. Feudel, F., & Unger, A. (2024). Development and implementation of concept-test questions in abstract algebra. International Journal of Mathematical Education in Science and Technology, 1-30. https://doi.org/10.1080/0020739X.2023.2297002

  27. Fraenkel, J., Wallen, N., & Hyun, H. (1993). How to design and evaluate research in education (10th ed.). McGraw-Hill Education.

  28. Gabriel, F., Buckley, S., & Barthakur, A. (2020). The impact of mathematics anxiety on self-regulated learning and mathematical literacy. Australian Journal of Education, 64(3), 227-242. https://doi.org/10.1177/0004944120947881

  29. Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cárdenas, L., Pantano, P., & Bilotta, E. (2019). Lesson planning by computational thinking skills in Italian pre-service teachers. Informatics in Education, 18(1), 69-104. https://doi.org/10.15388/infedu.2019.04

  30. Gouvêa, F. Q. (2012). A guide to groups, rings, and fields. MAA. https://doi.org/10.5948/upo9781614442110

  31. Grover, S., & Pea, R. (2023). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen, N. R. Howard, & C. Schulte (Eds.), Computer Science Education (pp. 51-68). Bloomsbury Academic. https://doi.org/10.5040/9781350296947.ch-005

  32. Halbeisen, L., Hamilton, M., & Růžička, P. (2007). Minimal generating sets of groups, rings, and fields. Quaestiones Mathematicae, 30(3), 355-363. https://doi.org/10.2989/16073600709486205

  33. Hanna, G., & Barbeau, E. (2002). Proof in mathematics. University of Toronto.

  34. Hanna, G., & Barbeau, E. (2010). Proofs as bearers of mathematical knowledge. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and Proof in Mathematics: Philosophical and Educational Perspectives (pp. 85-100). Springer US. https://doi.org/10.1007/978-1-4419-0576-5_7

  35. Hanna, G., & de Villiers, M. (2008). ICMI study 19: Proof and proving in mathematics education. Zdm, 40, 329-336. https://doi.org/10.1007/s11858-008-0073-4

  36. Intan, R., Rejeki, R., Panggabean, R. R., Sari, I. P., & Sari, S. Y. (2022). Application of the M-APOS learning model (modification-action, process, object, scheme) to improve mathematics outcomes in class IV state elementary school 011 Rambah Samo. Indonesian Journal of Basic Education, 5(3), 236-249. https://doi.org/10.37728/ijobe.v5i3.631

  37. Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96, 1-16. https://doi.org/10.1007/s10649-017-9761-8

  38. Kallia, M., van Borkulo, S. P., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). Characterising computational thinking in mathematics education: A literature-informed Delphi study. Research in Mathematics Education, 23(2), 159-187. https://doi.org/10.1080/14794802.2020.1852104

  39. Kieran, C. (2018). The early learning of algebra: A structural perspective. In S. Wagner & C. Kieran (Eds.), Research Issues in the Learning and Teaching of Algebra (pp. 33-56). Routledge. https://doi.org/10.4324/9781315044378-4

  40. Kilhamn, C., Bråting, K., Helenius, O., & Mason, J. (2022). Variables in early algebra: exploring didactic potentials in programming activities. ZDM - Mathematics Education, 54(6), 1273-1288. https://doi.org/10.1007/s11858-022-01384-0

  41. Kong, S.-C. (2016). A framework of curriculum design for computational thinking development in K-12 education. Journal of Computers in Education, 3, 377-394. https://doi.org/10.1007/s40692-016-0076-z

  42. Kuo, W.-C., & Hsu, T.-C. (2020). Learning computational thinking without a computer: How computational participation happens in a computational thinking board game. Asia-Pacific Education Researcher, 29, 67-83. https://doi.org/10.1007/s40299-019-00479-9

  43. Lee, H.-Y., Wu, T.-T., Lin, C.-J., Wang, W.-S., & Huang, Y.-M. (2024). Integrating computational thinking into scaffolding learning: An innovative approach to enhance science, technology, engineering, and mathematics hands-on learning. Journal of Educational Computing Research, 62(2), 431-467. https://doi.org/10.1177/07356331231211916

  44. Masfingatin, T., & Maharani, S. (2019). Computational thinking: Students on proving geometry theorem. International Journal of Scientific and Technology Research, 8(9), 2216-2223.

  45. McCarthy, T. (2021). Induction, constructivity, and grounding. Notre Dame Journal of Formal Logic, 62(1), 83-105. https://doi.org/10.1215/00294527-2021-0004

  46. Orban, C. M., & Teeling-Smith, R. M. (2020). Computational thinking in introductory physics. The Physics Teacher, 58(4), 247-251. https://doi.org/10.1119/1.5145470

  47. Palts, T., & Pedaste, M. (2020). A model for developing computational thinking skills. Informatics in Education, 19(1), 113-128. https://doi.org/10.15388/INFEDU.2020.06

  48. Putra, Z. H., Afrillia, Y. M., Dahnilsyah, D., & Tjoe, H. (2023). Prospective elementary teachers' informal mathematical proof using GeoGebra: The case of 3D shapes. Journal on Mathematics Education, 14(3), 449-468. https://doi.org/10.22342/jme.v14i3.pp449-468

  49. Rodríguez-Martínez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2020). Computational thinking and mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environments, 28(3), 316-327. https://doi.org/10.1080/10494820.2019.1612448

  50. Rowen, L. (2018). Algebra: groups, rings, and fields. A K Peters/CRC Press. https://doi.org/10.1201/9781315275598

  51. Salwadila, T., & Hapizah. (2024). Computational thinking ability in mathematics learning of exponents in grade IX. Infinity Journal, 13(2), 441-456. https://doi.org/10.22460/infinity.v13i2.p441-456

  52. Selden, A., & Selden, J. (2008). Overcoming students’ difficulties in learning to understand and construct proofs. In M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics education (pp. 95-110). The Mathematical Association of America. https://doi.org/10.5948/UPO9780883859759.009

  53. Stylianides, A. J. (2016). Proving in the elementary mathematics classroom. Oxford Academic. https://doi.org/10.1093/acprof:oso/9780198723066.001.0001

  54. Stylianides, A. L. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education (JRME), 38(3), 289-321. https://doi.org/10.2307/30034869

  55. Tabach, M., & Nachlieli, T. (2016). Communicational perspectives on learning and teaching mathematics: Prologue. Educational Studies in Mathematics, 91(3), 299-306. https://doi.org/10.1007/s10649-015-9638-7

  56. Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798

  57. Valenta, A., & Enge, O. (2022). Teaching practices promoting meta-level learning in work on exploration-requiring proving tasks. The Journal of Mathematical Behavior, 67, 100997. https://doi.org/10.1016/j.jmathb.2022.100997

  58. Wagner, S., & Parker, S. (1993). Advancing algebra. Research ideas for the classroom: high school mathematics. National Council of Teachers of Mathematics.

  59. Waterman, K. P., Goldsmith, L., & Pasquale, M. (2020). Integrating computational thinking into elementary science curriculum: An examination of activities that support students’ computational thinking in the service of disciplinary learning. Journal of Science Education and Technology, 29(1), 53-64. https://doi.org/10.1007/s10956-019-09801-y

  60. Wilkerson, M. H., & Fenwick, M. (2016). The practice of using mathematics and computational thinking. In C. V. Schwarz, C. Passmore, & B. J. Reiser (Eds.), Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices (pp. 181-204). National Science Teachers’ Association Press.

  61. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

  62. Wu, T.-T., Asmara, A., Huang, Y.-M., & Hapsari, I. P. (2024). Identification of problem-solving techniques in computational thinking studies: Systematic literature review. SAGE Open, 14(2), 1-20. https://doi.org/10.1177/21582440241249897